Heart and Circulatory Physiology

Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3

J. C. Kentish, R. J. Barsotti, T. J. Lea, I. P. Mulligan, J. R. Patel, M. A. Ferenczi


The ability of Ca2+ or inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to release Ca2+ from cardiac sarcoplasmic reticulum (SR) was investigated using saponin-skinned ventricular trabeculae from rats. To overcome diffusion delays, rapid increases in the concentrations of Ca2+ and Ins(1,4,5)P3 were produced by laser photolysis of “caged Ca2+” (Nitr-5) and “caged Ins(1,4,5)P3”. Photolysis of Nitr-5 to produce a small jump in [Ca2+] from pCa 6.8 to 6.4 induced a large and rapid force response (t1/2 = 0.89 s at 12 degrees C); the source of the Ca2+ that activated the myofibrils was judged to be the SR, since it was blocked by 0.1 mM ryanodine or 5 mM caffeine. A smaller, slower, and less consistent release of SR Ca2+ was produced by photorelease of Ins(1,4,5)P3. The results demonstrate that these caged compounds can be used to study excitation-contraction coupling in skinned multicellular preparations of cardiac muscle. The data are consistent with a major role for Ca2(+)-induced Ca2+ release in cardiac activation, whereas the role for Ins(1,4,5)P3 may be to modulate, rather than directly stimulate, SR Ca2+ release.