Diaspirin cross-linked Hb and norepinephrine prevent the sepsis-induced increase in critical O₂ delivery

ANDREAS W. SIELENKÄMPER, PEI YU, OTTO EICHELBRÖNNER, TAMMY MACDONALD, CLAUDIO M. MARTIN, IAN H. CHIN-YEE, AND WILLIAM J. SIBBALD

The A. C. Burton Vascular Biology Laboratory, Victoria Hospital Research Institute, and The University of Western Ontario, London, Ontario, Canada N6A 4G5

Received 30 August 1999; accepted in final form 17 April 2000

Sielenkämper, Andreas W., Pei Yu, Otto Eichelbrönnner, Tammy MacDonald, Claudio M. Martin, Ian H. Chin-Yee, and William J. Sibbald. Diaspirin cross-linked Hb and norepinephrine prevent the sepsis-induced increase in critical O₂ delivery. Am J Physiol Heart Circ Physiol 279: H1922–H1930, 2000.—We hypothesized that support of arterial perfusion pressure with diaspirin cross-linked Hb (DCLHb) would prevent the sepsis-induced attenuation in the systemic O₂ delivery-O₂ uptake relationship. Awake septic rats were treated with a chronic infusion of DCLHb or a reference treatment [norepinephrine (NE)] to increase mean arterial pressure by 10–20% over 18 h. Septic and sham control groups received normal saline. Isovolemic hemodilution to create anemic hypoxia was then performed in a metabolic box during continuous measurement of systemic O₂ uptake. O₂ delivery was calculated from hemodynamic variables, and the critical point of O₂ delivery (D˙O₂crit) was determined using piecewise regression analysis of the O₂ delivery-O₂ uptake relationship. Sepsis increased D˙O₂crit from 4.99 ± 0.17 to 6.69 ± 0.42 ml·min⁻¹·100 g⁻¹ (P < 0.01), while O₂ extraction capacity was decreased (P < 0.05). DCLHb and NE infusion prevented the sepsis-induced increase in D˙O₂crit [4.56 ± 0.42 ml·min⁻¹·100 g⁻¹ (P < 0.01) and 5.04 ± 0.56 ml·min⁻¹·100 g⁻¹ (P < 0.05), respectively]. This was explained by a 59% increase in O₂ extraction capacity in the DCLHb group compared with septic controls (P < 0.05), whereas NE treatment decreased systemic O₂ uptake in anemic hypoxia (1.51 ± 0.08 vs. 1.87 ± 0.1 ml·min⁻¹·100 g⁻¹ in septic controls, P < 0.05). We conclude that DCLHb ameliorated O₂ extraction capacity in the septic microcirculation, whereas NE decreased the metabolic demands of the tissues.

Compromise uptake of the systemically provided O₂ (16). Convective O₂ delivery (D˙O₂) may be impaired when a depression in myocardial contractility interferes with the ability to appropriately increase cardiac output (CO) (10, 25), when vasoplegia of resistance vessels maldistributes blood flow between organs (21), or when microvascular dysfunction causes inadequate capillary perfusion (9, 19). In addition, it has been postulated that mitochondrial dysfunction in sepsis restricts the optimal use of available O₂ (34, 38).

As a consequence of these abnormalities, the normal relationship between systemic D˙O₂ and O₂ uptake (V˙O₂) is altered in sepsis, and the maximal O₂ extraction capacity of the tissues is thereby decreased (23, 27).

Under experimental conditions, this phenomenon becomes manifest as an elevation of the critical D˙O₂ (D˙O₂crit), the point where systemic V˙O₂ becomes dependent on O₂ supply (23). In a recent study to determine the efficacy of an O₂-carrying, cell-free Hb solution, diaspirin cross-linked Hb (DCLHb) (30), we found that infusing DCLHb improved O₂ extraction capacity in septic rats (30). One possible explanation for this effect was that DCLHb recruited capillaries previously not perfused with red blood cells (RBCs), since a subsequent study demonstrated an increase in the density of RBC-perfused capillaries in the gut mucosa of septic rats after DCLHb infusion (31).

In addition to increasing microvascular perfusion, there are other explanations for the activity of Hb solutions to increase O₂ extraction capacity in sepsis. Because Hb solutions are effective O₂ carriers, but much smaller than RBCs, Hb in solution may access capillaries unavailable to RBCs, because their lumens are narrowed by edema (29). Hb molecules may also facilitate tissue oxygenation, since they are uniformly distributed within the plasma phase and thus reduce diffusion resistance for O₂ (24).

The present study was designed to determine the effect of DCLHb infusion on the systemic V˙O₂-D˙O₂ relationship and to identify why DCLHb infusion increases the microvascular O₂ extraction in sepsis. We chose to administer DCLHb chronically, in doses that compromise uptake of the systemically provided O₂ (16). Convective O₂ delivery (D˙O₂) may be impaired when a depression in myocardial contractility interferes with the ability to appropriately increase cardiac output (CO) (10, 25), when vasoplegia of resistance vessels maldistributes blood flow between organs (21), or when microvascular dysfunction causes inadequate capillary perfusion (9, 19). In addition, it has been postulated that mitochondrial dysfunction in sepsis restricts the optimal use of available O₂ (34, 38).

As a consequence of these abnormalities, the normal relationship between systemic D˙O₂ and O₂ uptake (V˙O₂) is altered in sepsis, and the maximal O₂ extraction capacity of the tissues is thereby decreased (23, 27). Under experimental conditions, this phenomenon becomes manifest as an elevation of the critical D˙O₂ (D˙O₂crit), the point where systemic V˙O₂ becomes dependent on O₂ supply (23). In a recent study to determine the efficacy of an O₂-carrying, cell-free Hb solution, diaspirin cross-linked Hb (DCLHb) (30), we found that infusing DCLHb improved O₂ extraction capacity in septic rats (30). One possible explanation for this effect was that DCLHb recruited capillaries previously not perfused with red blood cells (RBCs), since a subsequent study demonstrated an increase in the density of RBC-perfused capillaries in the gut mucosa of septic rats after DCLHb infusion (31).

In addition to increasing microvascular perfusion, there are other explanations for the activity of Hb solutions to increase O₂ extraction capacity in sepsis. Because Hb solutions are effective O₂ carriers, but much smaller than RBCs, Hb in solution may access capillaries unavailable to RBCs, because their lumens are narrowed by edema (29). Hb molecules may also facilitate tissue oxygenation, since they are uniformly distributed within the plasma phase and thus reduce diffusion resistance for O₂ (24).

The present study was designed to determine the effect of DCLHb infusion on the systemic V˙O₂-D˙O₂ relationship and to identify why DCLHb infusion increases the microvascular O₂ extraction in sepsis. We chose to administer DCLHb chronically, in doses that...
provided a moderate increase in mean arterial blood pressure (MAP). Because Hb solutions will increase vascular resistance because of their effect to bind nitric oxide (13, 14, 28), we added a control group (septic rats) in which norepinephrine (NE) was infused to also increase vascular resistance. By this approach, we hoped to isolate any effects of DCLHb infusion on the microcirculation per se, that is, excluding the influence of DCLHb on vascular resistance. The interventions were infused over an 18-h period to allow sufficient time for complete expression of potential effects on the systemic $V_{\text{O}_2} - D_{\text{O}_2}$ relationship, as well as to enhance the potential generalizability of findings to the clinical situation. When the effects of both treatments on $D_{\text{O}_2 \text{crit}}$ were determined after completion of the treatment phase by use of acute progressive isovolemic hemodilution and on-line measurements of V_{O_2}, we found that DCLHb and NE were equally effective at preventing the sepsis-induced increase of the $D_{\text{O}_2 \text{crit}}$.

METHODS

The protocol of this study was approved by the Council on Animal Care of the University of Western Ontario (London, ON, Canada).

Animal model. Forty-seven male Sprague-Dawley rats, weighing 320–380 g, were used after a 1-wk acclimatization period in our laboratory. Anesthesia was induced and maintained by halothane inhalation. Catheters were advanced into the left femoral vein, the superior vena cava, and the left carotid artery. A thermodilution CO probe (IT-21 thermocouple, Physiotemp Instruments, Clifton, NJ) was then positioned in the aortic arch via the carotid artery. After cannulation, rats were randomized to undergo sham laparotomy or laparotomy and cecal ligation and perforation (CLP), according to a previously standardized technique (9), to create sepsis. Fluid resuscitation with 0.9% saline (2 ml·100 g$^{-1}$·h$^{-1}$ iv) was started postoperatively. The carotid line was continuously flushed with heparin solution (45 IU/h) to maintain patency, and fentanyl (2 µg·100 g$^{-1}$·h$^{-1}$ iv) was provided to ensure adequate analgesia.

Experimental protocol. Figure 1 shows the experimental design of the study. Twenty-four hours after surgery, MAP and CO were determined, and blood samples were drawn to assess biochemistry, including blood gases. CLP-septic animals ($n = 39$) were then randomized to receive normal saline (NS) alone ($n = 15$) or a continuous infusion of DCLHb ($n = 14$) or NE ($n = 10$). With both DCLHb and NE, the goal was to administer a dose that increased MAP by 10–20% over the next 18 h. Sham rats ($n = 8$) received NS. Pilot experiments confirmed that this model of chronic infusion was technically possible and identified the general dose ranges required to achieve target pressures for DCLHb and NE. After 18 h of treatment, measurements were repeated, the animals were placed in a metabolic cage, and the arterial and venous lines were connected to withdrawal and perfusion pumps, respectively. Treatments were continued. After a 30-min acclimatization period, MAP, CO, arterial O_2 content, and systemic V_{O_2} were measured. Arterial blood (0.7 ml) was withdrawn to determine Hb concentration, arterial O_2 saturation, and lactate concentration. Isovolemic hemodilution was then carried out (6 ml/h) to determine the systemic $D_{\text{O}_2 - V_{\text{O}_2}}$ relationship. Systemic V_{O_2} was measured semicontinuously (see below) while measurements of MAP and CO were repeated after every 2 ml of isovolemic hemodilution. Blood samples for arterial O_2 content, Hb concentration, and lactate were simultaneously obtained. At all times, shed blood was replaced by identical volumes of warmed rat plasma obtained from donor rats.

Animals were excluded if technical failure (e.g., damage or blocking of arterial and venous catheters) occurred before the completion of the treatment phase. After completion of measurements, rats were euthanized with an overdose of pentobarbital sodium (65 mg), and postmortem examination was carried out.

Treatments and isovolemic hemodilution. Twenty-four hours after sepsis was induced, septic animals were randomized to receive a continuous infusion of DCLHb, NE, or placebo (NS). After a bolus infusion of 100 mg of DCLHb solution over 3 min to obtain effective plasma concentrations, DCLHb was infused at a rate of 70–300 mg·kg$^{-1}$·h$^{-1}$ iv. NE was adjusted to an effective dose within a few minutes and was then infused at a rate of 0.25–1.25 µg·kg$^{-1}$·min$^{-1}$. Doses in the treatment groups were adjusted at 30 min and at 1, 2, 3, 6, and 12 h to maintain the increase in MAP at targeted levels. The femoral line was used for drug infusion, and adjustments for a constant infusion volume were made.
via the jugular line. CLP controls and sham rats received NS via both lines (CLP-NS group and sham group, respectively). Total infusion volumes were kept at a rate of 1.5 ml·100 g\(^{-1}\)·h\(^{-1}\) in all groups. DCLHb was prepared by Baxter Healthcare (Round Lake, IL) as described previously (3, 22) and was formulated at a concentration of 100 g/l in a lactated electrolyte solution. NE was diluted in normal saline and administered at a concentration of 10 μg/ml.

For isovolemic hemodilution, rat plasma obtained from donor rats by use of a previously standardized protocol (30) and warmed to body temperature was filtered through a 40-μm transfusion filter. With the use of syringe pumps (Razel Scientific Instruments, Stamford, CT) set at a rate of 6 ml/h, blood was withdrawn via the arterial line and plasma was infused via the jugular line. In this way, Do\(_2\) was lowered in a stepwise manner to decrease it beyond the point of Do\(_2\) crit.

Measurements and calculations. Systemic V\(_O2\) was measured semicontinuously by means of an Oxymax system (Columbus Instruments, Columbus, OH). A constant flow of room air at a rate of 3.5 l/min was sampled by a paramagnetic O\(_2\) sensor for analysis of O\(_2\) content and then by an infrared CO\(_2\) analyzer. Reference measurements were made by sampling room air every five samples. Systemic V\(_O2\) was measured from the reduction of arterial O\(_2\) content by CO. Systemic vascular resistance (SVR) and systemic O\(_2\) extraction ratio were calculated using standard formulas. D\(_O2\) crit was determined using piecewise regression analysis of the V\(_O2\)-D\(_O2\) relationship as described by Samsel and Schumacker (26). The whole body V\(_O2\)-Do\(_2\) relationship is biphasic, with the point where systemic V\(_O2\) becomes dependent on arterial O\(_2\) content by CO. Systemic vascular resistance (SVR) and systemic O\(_2\) extraction ratio were calculated using standard formulas. Do\(_2\) crit was determined by using two-way ANOVA for repeated measurements with appropriate post hoc comparisons (Student-Newman-Keuls method). For all statistical tests, significance was assumed at P < 0.05. Values are means ± SE.

RESULTS

Animal model. Twenty-four hours after the surgical procedures, sham rats had recovered. All animals treated with CLP demonstrated reduced activity, piloerection, and exudation around the eyes and nose. The effects of CLP-sepsis on hemodynamic and biochemical markers are shown in Table 1. Septic rats presented with modest hypotension, an elevated CO, and a decreased SVR. CLP-sepsis was also characterized by leukopenia and thrombocytopenia, whereas the arterial lactate increased only slightly compared with the sham group. On postmortem examination, inspection of the abdominal contents revealed spillage of bowel contents and peritonitis in CLP-septic rats, whereas the aspect of the abdomen was normal in all sham rats.

Effects of DCLHb and NE infusion after 18 h of treatment. Our intention was to increase MAP with DCLHb or NE infusion in CLP-septic rats by 10–20% over 18 h. With either of the treatments, MAP, when averaged across all measurements of the treatment period, was kept in the desired range (Fig. 2, horizontal lines). Average blood pressure was 109 ± 2 mmHg for the sham group, 96 ± 5 mmHg for the CLP-NS rats, and 114 ± 3 and 109 ± 3 mmHg for the DCLHb- and NE-treated groups, respectively. Especially among the animals in the three septic groups, considerable variability in blood pressure was observed independent from treatment (Fig. 2, vertical lines).

Mortality was determined for the treatment period including the time of isovolemic hemodilution before Do\(_2\) crit (e.g., O\(_2\) supply dependency) was reached. In the sham group, no mortality was observed. Mortality in the septic groups was 7 of 15 in the CLP-NS group (46.7%), 7 of 14 in the CLP-DC group (50%), and 2 of 10 in the CLP-NE group (20%). Differences in mortality among the treatment groups, and comparing the treatment group with the CLP-NS group, were not significant.

Table 2 summarizes the effects of DCLHb and NE infusion on CO, SVR, O\(_2\) delivery, and biochemical markers at 24 h.

Table 1. Effects of CLP-sepsis on hemodynamic and biochemical markers at 24 h

<table>
<thead>
<tr>
<th></th>
<th>Sham (n = 8)</th>
<th>CLP (n = 39)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP, mmHg</td>
<td>115 ± 4.2</td>
<td>99 ± 2.3</td>
<td><0.01</td>
</tr>
<tr>
<td>CO, ml·min(^{-1})·100 g(^{-1})</td>
<td>53.3 ± 3.9</td>
<td>65.4 ± 1.9</td>
<td><0.01</td>
</tr>
<tr>
<td>SVR, mmHg·ml(^{-1})·min·100 g(^{-1})</td>
<td>0.16 ± 0.02</td>
<td>0.10 ± 0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>WBC, 10(^6)/l</td>
<td>9.8 ± 1.1</td>
<td>5.3 ± 0.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>Platelets, 10(^9)/l</td>
<td>517 ± 131</td>
<td>364 ± 126</td>
<td><0.05</td>
</tr>
<tr>
<td>Do(_2), ml·min(^{-1})·100 g(^{-1})</td>
<td>9.65 ± 0.7</td>
<td>10.9 ± 0.32</td>
<td>NS</td>
</tr>
<tr>
<td>Lactate, mmol/l</td>
<td>0.5 ± 0.03</td>
<td>0.9 ± 0.06</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, number of rats; CLP, cecal ligation and perforation; MAP, mean arterial pressure; CO, cardiac output, SVR, systemic vascular resistance; WBC, white blood count; Do\(_2\), systemic O\(_2\) delivery. P values are from Student's t-test; NS, not significant.
markers after completion of the 18-h treatment phase. CO and systemic Do$_2$ were decreased in the CLP-DC group compared with CLP-NS and CLP-NE groups, and O$_2$ extraction ratio was higher in the CLP-DC than in the CLP-NE group. SVR was elevated in DCLHb-treated rats, but not in the CLP-NE group. There were no treatment effects on systemic VO$_2$, arterial and venous O$_2$ saturation, Hb concentration, white blood cell count, platelet count, and arterial lactate concentration.

Effects of DCLHb and NE infusion on MAP and O$_2$ transport during isovolemic hemodilution. Figure 3 shows the changes in MAP during the isovolemic hemodilution procedure in all groups. Compared with baseline, there was a significant decrease in blood pressure during hemodilution in all except the DCLHb group. Compared with the sham group, CLP-septic rats were hypotensive during the hemodilution procedure ($P < 0.05$). Continuing the infusion of DCLHb or NE resulted in higher blood pressure than in untreated septic rats. Toward the end of the experiment, however, blood pressure in the NE-treated rats decreased to the level of the CLP-NS group ($P < 0.05$ vs. DCLHb group).

In the CLP-NS group, Do$_2$crit was increased compared with the sham group (from 4.99 \pm 0.17 to 6.69 \pm 0.42 ml·min$^{-1}$·100 g$^{-1}$, $P < 0.01$; Fig. 4). At the Do$_2$crit, all the following were also changed compared with the sham rats: 1) O$_2$ extraction capacity was depressed (20%, $P < 0.05$); 2) Hb concentration was greater (67 ± 5 vs. 44 ± 2 g/l, $P < 0.001$); and 3) systemic VO$_2$ was greater (18.5 ± 1 vs. 15.3 ± 0.9 ml·min$^{-1}$·100 g$^{-1}$, $P < 0.05$). CO, however, was not different between the sham and CLP septic rats at the Do$_2$crit (299 ± 24 and 314 ± 22 ml/min, respectively).

In the DCLHb- and NE-infused septic rats, the sepsis-induced increase in Do$_2$crit was prevented ($P < 0.01$ vs. CLP-DC).

Table 2. Effects of 18 h of chronic infusion of diaspirin cross-linked Hb or NE in septic rats

<table>
<thead>
<tr>
<th></th>
<th>CLP-NS (n = 10)</th>
<th>CLP-DC (n = 9)</th>
<th>CLP-NE (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO, ml·min$^{-1}$·100 g$^{-1}$</td>
<td>63 \pm 3.4</td>
<td>48.1 \pm 2.9*</td>
<td>60 \pm 2.8*</td>
</tr>
<tr>
<td>SVR, mmHg·ml$^{-1}$·min$^{-1}$·100 g$^{-1}$</td>
<td>0.1 \pm 0.03</td>
<td>0.16 \pm 0.05*</td>
<td>0.12 \pm 0.05</td>
</tr>
<tr>
<td>Do$_2$, ml·min$^{-1}$·100 g$^{-1}$</td>
<td>10.5 \pm 0.4</td>
<td>7.7 \pm 0.4*</td>
<td>9.7 \pm 0.4*</td>
</tr>
<tr>
<td>VO$_2$, ml·min$^{-1}$·100 g$^{-1}$</td>
<td>20.2 \pm 0.9</td>
<td>18.9 \pm 0.9</td>
<td>17.8 \pm 0.9</td>
</tr>
<tr>
<td>O$_2$E ratio</td>
<td>17.3 \pm 0.8</td>
<td>21.4 \pm 1.8*</td>
<td>15.2 \pm 1.7</td>
</tr>
<tr>
<td>Sa$_{O_2}$, %</td>
<td>95.9 \pm 2.3</td>
<td>95.3 \pm 1.1</td>
<td>91.1 \pm 1</td>
</tr>
<tr>
<td>Sv$_{O_2}$, %</td>
<td>66.1 \pm 3.5</td>
<td>67 \pm 2.5</td>
<td>74.8 \pm 1.3</td>
</tr>
<tr>
<td>Hb, g/l</td>
<td>118 \pm 7</td>
<td>123 \pm 5</td>
<td>123 \pm 3</td>
</tr>
<tr>
<td>Platelets, 109/l</td>
<td>218 \pm 27</td>
<td>194 \pm 38</td>
<td>199 \pm 35</td>
</tr>
<tr>
<td>Lactate, mmol/l</td>
<td>1 \pm 0.1</td>
<td>1.8 \pm 0.4</td>
<td>1.3 \pm 0.2</td>
</tr>
</tbody>
</table>

Values are means \pm SE; n, number of rats. NS, normal saline; DC, diaspirin cross-linked Hb; NE, norepinephrine; VO$_2$, systemic O$_2$ uptake; O$_2$E, O$_2$ extraction; Sa$_{O_2}$, arterial O$_2$ saturation; Sv$_{O_2}$, mixed venous O$_2$ saturation; Hb, arterial Hb concentration. $^aP < 0.05$ vs. CLP-NS; $^bP < 0.01$ vs. CLP-NS; $^*P < 0.01$ vs. CLP-DC; $^dP < 0.001$ vs. CLP-NS; $^eP < 0.05$ vs. CLP-NE.
and $P < 0.05$ vs. CLP-NS; Fig. 4). At the D_{O2}crit, systemic V_{O2} was decreased in the CLP-NE group (-19% vs. CLP-NS, $P < 0.05$; Fig. 5A) but not in the CLP-DC group. The Hb concentration was lower in DCLHb- and NE-treated rats ($*P < 0.05$ and $**P < 0.001$, respectively; Fig. 5B). The O_2 extraction ratio was increased by 59% in DCLHb rats compared with the CLP-NS group ($*P < 0.05$), whereas it was the same in the CLP-NE group ($P = 0.05$; Fig. 5C). Body temperature was not different between groups (37.8 ± 0.4, 38 ± 0.4, and $37.7 \pm 0.5^\circ C$ in CLP-NS, CLP-DC, and CLP-NE, respectively).

When the CO-SVR relationship was examined at the completion of the 18-h treatment phase, the CLP-NS group was clearly characterized by a high CO-low SVR (“hyperdynamic”) profile compared with the sham group. DCLHb-treated rats, compared with the CLP-NS group, presented with a low CO-high SVR profile. A similar effect was also seen in the CLP-NE group but to a much lesser degree (Fig. 6). Isovolemic hemodilution caused a shift to higher CO and lower SVR in all groups. However, the CLP-DC group, not the CLP-NE group, maintained a low CO-high SVR profile.

DISCUSSION

This experiment explored the effects of a chronic infusion of Hb solution, DCLHb, on the systemic V_{O2}-D_{O2} relationship. With a chronic, 18-h infusion of DCLHb, as well as with NE infusion in a control group, we prevented the usual adverse effect of a sepsis-induced increase in D_{O2}crit. This novel finding supports our conclusion that the disturbance in convective D_{O2} seen in sepsis, which depresses the host’s ability to extract O_2, is amenable to treatment.

Approach and animal model. Recent studies suggested that, in the presence of inadequate D_{O2}, cell-free Hb solutions may increase the maximal O_2 extraction capacity (24, 30, 32). Therefore, this study aimed at preventing sepsis-induced alterations in the systemic V_{O2}-D_{O2} relationship by using the hemodynamic prop-

![Fig. 4. Effects of DCLHb and NE infusion on D_{O2}crit. Values are means ± SE; $n = 7$ sham, 8 CLP-NS, 7 CLP-DC, and 7 CLP-NE. $#P < 0.05$ vs. sham. $*P < 0.05$ vs. CLP-NS. **$P < 0.01$ vs. CLP-NS.](http://ajpheart.physiology.org/)

![Fig. 5. Effects of DCLHb and NE infusion on key variables of O_2 transport at D_{O2}crit. Values are means ± SE; $n = 8$ CLP-NS, 7 CLP-DC, and 7 CLP-NE. A: systemic O_2 uptake (V_{O2}). $*P < 0.05$ vs. CLP-NS; $**P < 0.01$ vs. CLP-MS. B: Hb concentration. $*P < 0.05$ vs. CLP-NS; $**P < 0.001$ vs. CLP-NS. C: systemic O_2 extraction ratio. $*P < 0.05$ vs. CLP-NS; $**P < 0.01$ vs. CLP-NE. D: cardiac output (CO). $P = 0.05$ (not significant), CLP-NE vs. CLP-DC.](http://ajpheart.physiology.org/)
Body, arterial-venous shunting is more important to circulation and physiological arterial-venous shunt (37). The value of O2 supply: diffusion limitation in the microcirculation of tissue hypoxia and shock (27). Two mechanisms are the ultimate physiological threshold to the manifestation of tissue hypoxia. Reduced beyond this point. Thus the systemic D\dot{O}_2 crit becomes dependent on the systemic D\dot{O}_2 if the latter is maximized D\dot{O}_2 crit and the systemic V\dot{O}_2 is increased. D\dot{O}_2 crit is that this parameter defines the D\dot{O}_2 where O2 transport capacity becomes intact, since septic animals reached the same cardiac index at D\dot{O}_2 crit. Very similar sepsis-induced changes in O2 extraction capacity have been demonstrated in dogs by Nelson et al. (23), who proposed that microvascular injury might be the cause of the sepsis-induced attenuation in O2 transport. For the sepsis model as used in this experiment, alterations in arteriolar vascular reactivity (21), as well as reduced capillary perfusion and attenuation in microvascular blood flow in microvascular networks of different organs, have been demonstrated previously (5, 9, 19, 20).

It is important that chronic infusion of the catecholamine, NE, resulted in the same 10–20% increase in blood pressure that was achieved in Hb-treated septic rats throughout the 18-h treatment period. Therefore, the NE group may be regarded as an appropriate control for the blood pressure component of the effects of DCLHb infusion on the systemic V\dot{O}_2-D\dot{O}_2 relationship.

Mortality in this study was not significantly different between the septic groups, although the data for the NE group might suggest a decreased mortality compared with septic controls and DCLHb-treated rats. This study, however, was not designed to study effects of DCLHb and NE on mortality. An additional power analysis revealed that a larger sample size would have been required to determine treatment effects on mortality. Also, it has to be considered that this study presents data from survivors of the septic insult. One cannot exclude that this introduced bias on some of the results. However, because the objective of this study was to determine the effects of chronic DCLHb or NE infusion in sepsis, which is a syndrome with high lethality under experimental and clinical conditions, this was unavoidable.

Effects of interventions. The typical, sepsis-induced alteration of the V\dot{O}_2-D\dot{O}_2 relationship in CLP-septic rats was prevented by DCLHb, as indicated by a decreased D\dot{O}_2 crit compared with placebo-treated septic...
rats. In rats treated with the Hb solution, this effect was associated with an increased ability to extract O2, suggesting improved diffusive and/or convective O2 transport in the microcirculation. In the NE group, the sepsis-related increase in Do2_crit was also prevented, but O2 extraction was not increased at the critical point. However, in this group, a tendency for a decrease in systemic VO2 indicated a modulation of the hyperdynamic metabolic response to sepsis.

One possibility is that the only pharmacological property common to DCLHb and NE, that is, to increase vascular resistance, explains the observed effects on Do2_crit. Indeed, loss of vascular resistance, also referred to as “septic vasopedia,” is a characteristic consequence of the inflammation process in sepsis as a result of nitric oxide overproduction (17, 21). Septic vasopedia is followed by decreased perfusion pressures and inappropriate distribution of blood flows (17, 21), which may be the underlying cause for the within-organ, microregional O2 supply-demand imbalance in sepsis (4, 36). Therefore, improved blood flow distribution and increased perfusion pressure could explain the protective effect of DCLHb and NE infusion against sepsis-induced alterations of the VO2 Do2 relationship. Moreover, evidence for beneficial effects on the septic microcirculation have been demonstrated previously for DCLHb (31) and NE (40).

It is striking, however, that only DCLHb infusion increased the maximal O2 extraction capacity, whereas NE infusion, as indicated by a modest fall in VO2, preserved a normal Do2_crit via reduction of the metabolic needs. Despite comparable effects on blood pressure, this indicates that the effects of DCLHb and NE on the VO2 Do2 relationship could be explained, alternatively, by unique properties of each of the two agents.

Aside from cardiovascular effects, DCLHb is characterized by 1) excellent O2-carrying properties (8, 2) a rightward-shifted O2 dissociation curve [Po2 at which Hb is half-saturated (P50) = 32.4 mmHg] compared with human blood (8, 30), and 3) a characteristic distribution in the plasma, outside the RBCs (24). In this study, total Hb concentration was not increased in DCLHb-treated rats, and systemic Do2 was decreased, excluding transfusion effects as a cause for increased O2 extraction capacity. Also, it is unlikely that differences in P50 explain the effects of DCLHb on tissue O2 extraction capabilities, since compared with rat blood, which is characterized by a higher P50 of 37–38 mmHg, the O2 dissociation curve of DCLHb is shifted leftward. Studies on the effects of a leftward-shifted O2 dissociation curve on the physiological adaptation to acute decreases in Do2 reported only unfavorable effects on tissue oxygenation (39). Eventually, the distribution of DCLHb within the plasma compartment is (alternative to the effects on the vasculature) the only other possible explanation for increased O2 extraction capacity after DCLHb infusion. In a situation where microcirculatory perfusion is impaired, as in sepsis (9, 19), a homogeneous intravascular distribution of DCLHb may increase diffusion capacity and thus improve the abilities of the tissue to extract O2. For example, DCLHb could serve as a carrier or intermediary vehicle for O2 released from RBCs. A recent study in which a geometrical model was used, in fact, reported that the presence of Hb molecules outside the RBC decreases the diffusion resistance for O2 (24).

For the CLP-NE group, the unexpected decrease in systemic VO2 may also provide an explanation for the preservation of a normal VO2 Do2 relationship. This decrease in VO2 suggests that NE exhibited anti-inflammatory effects, implying that suppression of the typical systemic inflammatory process in sepsis decreased the O2 needs of the tissues. This assumption is supported by two recent studies demonstrating that catecholamines modulate monocyte receptor status and cytokine expression during inflammation in a potentially beneficial manner as a result of β2-adrenoreceptor activation (1, 12). In addition, others who studied the effect of NE infusion on O2 extraction capacity using an endotoxin model where Do2_crit was determined by a progressive decrease in CO also reported a decrease in Do2_crit (40). However, this work included no septic controls to relate this benefit of NE infusion to the extent of the lesion (40).

Alternatively, the decrease in tissue VO2 in our study could suggest some degree of tissue ischemia after NE infusion. However, arterial lactate, which has been used as a marker of tissue ischemia (15, 35), was not increased in the NE-treated rats at completion of the treatment phase. Also, it would be expected that, in the presence of baseline ischemia, Do2_crit would be reached at a higher value, opposite to the findings in this study. It therefore appears that no significant compromise of tissue oxygenation occurred during NE infusion.

Intervention effects on cardiac performance. In this study the improvement in the VO2 Do2 relationship with DCLHb and NE infusion did not only occur in the presence of different effects of the two agents on O2 transport but was also associated with differences in the hemodynamic profile. After 18 h of treatment, the DCLHb group presented with a decreased systemic Do2, most likely to be explained by a reflex fall in CO secondary to the increase in vascular resistance. In NE-treated rats, CO and systemic Do2 were not affected, probably since myocardial contractility was supported simultaneously with the increase in blood pressure. From this observation, one can conclude that in the DCLHb group no support of myocardial contractility and systemic Do2 was required to increase O2 extraction capacity. This conclusion is supported by the analysis of the relationship between CO and SVR (Fig. 6), since the low CO-high SVR profile in DCLHb-treated was maintained even when systemic Do2 had been diminished to the critical point. The latter observation may also confirm the assumption that the decrease in CO and systemic Do2 observed at 18 h of treatment did not reflect a decreased demand of O2 supply, because, otherwise, isovolemic hemodilution would have caused CO to rise (7).
In summary, this study provides clear evidence for an improved systemic VO$_2$-DO$_2$ relationship after goal-directed chronic infusion of DCLHb and NE to increase blood pressure in septic rats. The possibility exists that this beneficial effect of DCLHb and NE is the sole factor contributing to the changed VO$_2$-DO$_2$ relationship. Furthermore, our results show that DCLHb infusion primarily increased O$_2$ extraction capacity, whereas NE infusion increased O$_2$ delivery in the microcirculation, whereas NE may modulate the inflammatory response to sepsis.

This study was supported by Baxter Healthcare (Round Lake, IL), Medical Research Council of Canada Group Grant GR-12816 and Grant MT-13940, and Heart and Stroke Foundation of Ontario Grant NA3733. A. Sielenkämper was supported, in part, by a grant from the Department of Anesthesiology and Intensive Care, Westfälischen Wilhelms-Universität, Münster, Germany.

REFERENCES