Mechanisms of respiratory sinus arrhythmia in patients with mild heart failure

MAGDI EL-OMAR, ATTILA KARDOS, AND BARBARA CASADEI
University Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
Received 8 June 2000; accepted in final form 10 August 2000

El-Omar, Magdi, Attila Kardos, and Barbara Casadei. Mechanisms of respiratory sinus arrhythmia in patients with mild heart failure. Am J Physiol Heart Circ Physiol 280: H125–H131, 2001.—The high-frequency (HF) component of the heart rate variability (HRV) is regarded as an index of cardiac vagal responsiveness. However, when vagal tone is decreased, nonneural mechanisms could account for a significant proportion of the HF component. To test this hypothesis, we examined the HRV spectral power in 20 patients with mild chronic heart failure (CHF) and 11 controls before and during ganglion blockade with trimethaphan camsylate (3–6 mg/min iv). A small HF component was still present during ganglion blockade, and its amplitude did not differ between CHF patients and controls. The average contribution of nonneural oscillations to the HF component was 15% (range 1–77%) in patients with CHF and 3% (range 0.7–30%) in healthy controls (P < 0.005). During controlled breathing at 0.16 Hz, however, it decreased to 1% (range 0.2–13%) in healthy controls and 5% (range 1–44%) in CHF patients. Our results indicate that the HF component can significantly overestimate cardiac vagal responsiveness in patients with mild CHF. This bias is improved by controlled breathing, since this maneuver increases the vagal contribution to HF without affecting its nonneural component.

autonomic nervous system; vagus nerve; stretch

SPECTRAL ANALYSIS of heart rate (HR) variability (HRV) is a widely accepted method for evaluating the cardiac autonomic modulation in physiological and pathological conditions (27). In particular, it is well established that in the supine position and at a breathing frequency >0.15 Hz the high-frequency (HF) component of the HRV power spectrum (i.e., respiratory sinus arrhythmia) provides a measure of “cardiac parasympathetic responsiveness,” since it reflects the modulation of vagal cardiac efferent activity by breathing and the sinoatrial response to that modulation (23, 24). However, a small HF component has been seen in the transplanted denervated human heart (2, 3, 18, 25) and in healthy subjects after autonomic blockade (7, 23), suggesting that breathing-related changes in atrial transmural pressure (6, 21) or in the direction of the cardiac axis (17) may be responsible for at least part of the HRV in the HF range. In young healthy subjects, the contribution of nonneural mechanisms to the HF power of the HRV increases from 1% at rest to 30% during exercise (7). This implies that, in the presence of vagal withdrawal, the HF component may significantly overestimate cardiac parasympathetic responsiveness, especially when its power is normalized for the R-R interval (RR) variance (16). These findings may be applicable to patients with chronic heart failure (CHF) who are known to have impaired cardiac parasympathetic responsiveness and a reduced HRV (5, 9, 22). Experimental data, however, indicate that right atrial stretch may suppress neural and nonneural components of respiratory sinus arrhythmia (14), suggesting that the relative contribution to the HF power in patients with CHF may remain small, despite a reduction in HRV. To test this hypothesis, we calculated the relative contribution of autonomic and nonneural inputs to the HF power of the HRV in patients with mild CHF and in healthy age-matched controls.

METHODS

Twenty patients with stable heart failure [New York Heart Association (NYHA) Class II, mean age 61 ± 2 yr] and 11 age-matched healthy subjects (mean age 58 ± 2 yr) volunteered for the study. The latter were in good health as indicated by medical history, physical examination, electrocardiogram (ECG), and arterial blood pressure (BP) measurements. None of healthy subjects was taking any medication. All patients had been in stable CHF for >3 mo. Fifteen patients had had a documented myocardial infarction, one had chronic ischemic heart disease, and four had dilated cardiomyopathy. All patients were on angiotensin-converting enzyme inhibitors and furosemide, and one was on a β-blocker. None was on digitalis or antiarrhythmic drugs. The average radionuclide left ventricular ejection fraction was 25 ± 6% (mean ± SD).

Subjects with a history of atop allergy, glaucoma, diabetes mellitus, atrial fibrillation, angina pectoris, or ECG evidence of ischemia-limiting exercise, chronic obstructive pulmonary disease, and liver or renal failure were excluded.

Written consent was obtained after the subjects were informed of the procedures and risks involved in the study. The protocol was approved by the Central Oxford Research Ethics Committee.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Apparatus) were recorded in each subject for 10 min during baseline. Studies were conducted in a quiet room at a controlled temperature of 22°C. Subjects were familiarized with the procedures and asked to avoid exercise and alcoholic or caffeinated drinks on the day of the experiment. Patients with CHF were asked to stop their medications 12 h before the experiments. Five to seven intravenous phenylephrine injections (at 0.04 mg/kg) were given at 3-min intervals. The initial dose of 0.05 mg was adjusted to obtain an increase in systolic BP between 10 and 20 mmHg. Beat-by-beat BP recordings from the finger were obtained noninvasively by an infrared photoplethysmograph (Finapres 2300 BP monitor, Ohmeda) while the RR was measured from the ECG. The reflex lengthening of the RR in response to the phenylephrine-induced increase in systolic BP [i.e., the “baroreflex sensitivity,” in ms/mmHg (26)] was taken as an index of reflex vagal activity.

A 0.1% NaCl solution of the ganglion blocker trimethaphan camsylate (Arfonad, Roche) was then infused through an indwelling cannula in an antecubital vein. Beat-by-beat BP and ECG were monitored continuously during the infusion. The initial infusion rate of 3 mg/min was slowly increased until the RR response to phenylephrine was abolished. During ganglion blockade (GB), the dose of phenylephrine was adjusted to achieve a peak systolic BP similar to that obtained at baseline. The use of GB to inhibit the neural inputs to the heart was preferred to the more conventional β-adrenergic and muscarinic receptor antagonism for two reasons: 1) Unlike propranolol or atropine, trimethaphan camsylate has a very short half-life. This meant that we could reverse possible adverse reactions very rapidly and shorten considerably the period of observation after the experiment. 2) In our hands, high doses of atropine (i.e., 0.04 mg/kg) do not block the cardiac baroreceptor reflex in all subjects.

Experimental design. Subjects were familiarized with the procedures and asked to avoid exercise and alcoholic or caffeinated drinks on the day of the experiment. Patients with CHF were asked to stop their medications 12 h before the experiments. Studies were conducted in a quiet room at a controlled temperature of 22°C, 2 ± 2°C after a light meal. After 20 min of rest in the supine position, lead II of the ECG, a breathing signal (obtained by a thermistor and from changes in chest impedance), and ventilation (Vi, in l/min; Harvard Apparatus) were recorded in each subject for 10 min during spontaneous breathing and for 10 min during controlled breathing at 0.16 Hz. Minute averages of tidal volume (VT, ml) were obtained by dividing Vi by the breathing frequency.

The pulse interval response to baroreceptor stimulation was then tested (26). Briefly, three to five rapid intravenous injections of phenylephrine hydrochloride (Boots Pharmaceuticals) were given at ~3-min intervals. The initial dose of 0.05 mg was adjusted to obtain an increase in systolic BP between 10 and 20 mmHg. Beat-by-beat BP recordings from the finger were obtained noninvasively by an infrared photoplethysmograph (Finapres 2300 BP monitor, Ohmeda) while the RR was measured from the ECG. The reflex lengthening of the RR in response to the phenylephrine-induced increase in systolic BP [i.e., the “baroreflex sensitivity,” in ms/mmHg (26)] was taken as an index of reflex vagal activity.

Table 1. HRV before and during GB in patients with mild heart failure and age-matched controls

<table>
<thead>
<tr>
<th></th>
<th>RR, ms</th>
<th>SDRR, ms</th>
<th>LE, ms</th>
<th>HE, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHF</td>
<td>Controls</td>
<td>CHF</td>
<td>Controls</td>
</tr>
<tr>
<td>Baseline</td>
<td>745.5 ± 49.3</td>
<td>867.9 ± 50.4</td>
<td>25.63 ± 4.03</td>
<td>35.53 ± 2.82‡</td>
</tr>
<tr>
<td>GB</td>
<td>635.1 ± 37.3*</td>
<td>648.0 ± 48.0*</td>
<td>6.55 ± 0.47*</td>
<td>5.80 ± 0.48*</td>
</tr>
<tr>
<td>Controlled breathing at 0.16 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>745.0 ± 51.0</td>
<td>866.3 ± 51.0</td>
<td>27.91 ± 4.12</td>
<td>45.66 ± 4.61‡</td>
</tr>
<tr>
<td>GB</td>
<td>643.0 ± 37.1*</td>
<td>636.6 ± 51.5*</td>
<td>7.07 ± 0.73*</td>
<td>6.24 ± 0.70*</td>
</tr>
</tbody>
</table>

Values are means ± SE of 15 patients with chronic heart failure (CHF) and 9 controls. HRV, heart rate variability; GB, ganglion blockade; RR, R-R interval; SDRR, RR standard deviation; LF, amplitude of the low-frequency component; HF, amplitude of the high-frequency component. *P < 0.005, GB vs. baseline; †P < 0.05, controlled breathing vs. spontaneous breathing; ‡P < 0.05, controlled breathing vs. baseline.
minimum order of 12. A spectral decomposition method was then applied to evaluate the power and the central frequency of the low-frequency (LF, 0.04–0.15 Hz) and high-frequency (HF, 0.15–0.50 Hz) components. The relative contribution of nonneural mechanisms to the HF power was calculated as follows

\[
\text{HF power after GB (ms}^2\text{)} \times 100
\]

The very-low-frequency component (<0.04 Hz) was examined to assess the presence of narrow peaks indicating periodic breathing (19).

Cross-spectral analysis. To assess the relationship between respiration and HF oscillations, the cross spectrum and squared coherence function of the HRV and the breathing signal were calculated as described by Pagani et al. (20). Briefly, cross spectra were computed by fast Fourier transformation, using a triangular window, on successive 50% overlapping series of 64 RRs each. The squared coherence function was used to evaluate the correlation between breathing and RR oscillations at the same frequency. The value of this function is regarded as an analog of the squared correlation coefficient \((r^2)\) and ranges from 0 to 1.

Statistical analysis. Values are means ± SE. ANOVA (SuperANOVA, Abacus Concepts) was used to compare the data within the protocol stages and between patients with CHF and healthy subjects. To achieve a normal distribution and to normalize the variance of the data between stages, comparisons were made using the square root of the power of the spectral components (i.e., their amplitude, in ms). Non-parametric statistic was employed to compare the contribution of nonneural mechanisms to the HF power in CHF patients and controls. For this variable, data are given as geometric means. Statistical significance was accepted at \(P < 0.05\).

RESULTS

Two CHF patients and one control subject could not complete the study, since they developed a vasovagal reaction (bradycardia, nausea, sweating, and hypotension) shortly after the start of the infusion of trimethaphan camsylate. In two CHF patients and one control subject, the infusion of trimethaphan camsylate was not attempted, since the presence of frequent ectopic beats did not permit a satisfactory analysis of the baseline ECG recordings.

GB was usually obtained with an infusion rate of trimethaphan camsylate between 5 and 6 mg/min. At these doses, the increase in BP induced by the intra-

<table>
<thead>
<tr>
<th></th>
<th>CHF</th>
<th>Controls</th>
<th>CHF</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous breathing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6.9 ± 0.5</td>
<td>7.7 ± 0.7</td>
<td>517.3 ± 30.3</td>
<td>617.4 ± 48.8</td>
</tr>
<tr>
<td>GB</td>
<td>6.9 ± 0.5</td>
<td>7.6 ± 0.8</td>
<td>500.9 ± 34.0</td>
<td>601.2 ± 47.7</td>
</tr>
<tr>
<td>Controlled breathing at 0.16 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>7.4 ± 0.4</td>
<td>8.7 ± 1.0</td>
<td>768.3 ± 44.3*</td>
<td>950.0 ± 91.8*</td>
</tr>
<tr>
<td>GB</td>
<td>7.3 ± 0.5</td>
<td>8.8 ± 1.1</td>
<td>756.3 ± 54.4*</td>
<td>948.4 ± 112.6*</td>
</tr>
</tbody>
</table>

Values are means ± SE. \(\dot{V}\), ventilation; \(V_T\), tidal volume. * \(P < 0.05\) compared with spontaneous breathing.

Fig. 2. Tachogram (top) and power spectra of the HRV (middle) and breathing signal (bottom) before and during GB in a healthy subject. Whereas the low-frequency (LF) component (centered at ~0.1 Hz) is completely abolished by GB, the high-frequency (HF) component (0.15–0.50 Hz) is still present, albeit greatly reduced in amplitude (note the different scale in the y-axis).
venous injection of phenylephrine was associated with a modest shortening of the RR in four subjects (Fig. 1) and no change in the others, with the exception of one CHF patient, in whom a trimethaphan camsylate infusion of 6 mg/min did not completely abolish the RR lengthening associated with phenylephrine. Since high doses of trimethaphan camsylate can cause respiratory depression, it was considered unsafe to increase the rate of infusion further, and the data from this patient were not included in the final analysis. During GB, all subjects experienced dry mouth and cycloplegia.

Baseline measurements. The mean RR did not differ between CHF patients \((n = 15) \) and age-matched control subjects \((n = 9) \); however, the standard deviation of the RR was lower in CHF patients during spontaneous \((P < 0.05) \) and controlled \((P < 0.001) \) breathing (Table 1). Likewise, patients had lower baroreflex sensitivity \((4.34 \pm 0.81 \text{ vs. } 10.85 \pm 2.31 \text{ ms/mmHg, } P < 0.05) \) and a reduced HF component (Table 1). There were no significant differences in \(V_t \), \(V_T \) (Table 2), or spontaneous breathing frequency between control subjects and CHF patients \((0.24 \pm 0.02 \text{ and } 0.28 \pm 0.03 \text{ Hz, respectively}) \). Controlled breathing at 0.16 Hz increased \(V_T \) (Table 2) and the amplitude of the HF component (Table 1) in both groups.

The amplitude of LF oscillations was significantly greater in healthy controls than in CHF patients during spontaneous breathing; this difference, however, was no longer present during controlled breathing (Table 1). The center frequency of the LF component did not differ between the two groups \((0.09 \pm 0.01 \text{ vs. } 0.10 \pm 0.01 \text{ Hz during spontaneous breathing and } 0.09 \pm 0.01 \text{ vs. } 0.09 \pm 0.01 \text{ Hz during controlled breathing}) \).

During spontaneous breathing, narrow peaks in the very-low-frequency range (centered at ~0.02 Hz) of the HRV power spectrum were found in two CHF patients. Analysis of the respiration signal showed that they were due to periodic breathing. This abnormal breathing pattern was not seen during controlled breathing or GB (data not shown).

GB. GB caused a significant reduction in the mean RR and its standard deviation (Table 1) in both groups. The RR fluctuations in the LF range were completely abolished by GB, but some degree of respiratory sinus arrhythmia persisted in all subjects and did not differ in magnitude between CHF patients and healthy controls (Table 1, Figs. 2 and 3). The correlation between RR fluctuations in the HF range and the breathing signal was not affected by GB (coherence values of 0.82 \pm 0.03 and 0.89 \pm 0.02, respectively), indicating that a close relationship between these signals persisted after neural control of sinoatrial node activity was abolished.

There was no significant change in \(V_t \) or \(V_T \) in either group with GB (Table 2). Breathing frequency was not affected by GB and did not differ between controls and CHF patients \((0.24 \pm 0.03 \text{ and } 0.27 \pm 0.02 \text{ Hz, respectively}) \). Controlled breathing significantly increased \(V_T \) (Table 2) but did not affect the amplitude of the HF component after GB (Table 1).

Fig. 3. Tachogram (top) and power spectra of the heart rate variability (HRV, middle) and breathing signal (bottom) before and during GB in a chronic heart failure (CHF) patient. Note the reduction in amplitude of HF oscillations before GB compared with Fig. 2. As in Fig. 2, nonneural HF oscillations are responsible for most of the residual HRV during GB, whereas LF oscillations are completely abolished.
Nonneural contribution to the HF power in CHF patients and in healthy controls. During spontaneous breathing, the relative contribution of nonneural mechanisms to the HF power was 3% in healthy controls (range 0.7–30%) and 15% in patients with CHF (range 1–76%, \(P < 0.005 \) vs. controls). During controlled breathing, nonneural mechanisms accounted for 1% of the HF power in healthy controls (range 0.2–13%) and 5% in CHF patients (range 1–44%, \(P < 0.005 \) vs. controls and \(P < 0.01 \) for the effect of controlled breathing at 0.16 Hz in both groups; Fig. 4).

In all subjects, the natural logarithm of the nonneural contribution to HF was inversely related to the RR standard deviation (Fig. 5; adjusted \(r^2 = 0.53 \) during spontaneous breathing and 0.50 during controlled breathing, \(P < 0.0001 \) for both).

DISCUSSION

Heart failure is associated with neurohumoral activation and a reduction in cardiac vagal responsiveness (10). Spectral analysis of the HRV in these patients has shown that the absolute power in the LF range decreases with the worsening of the disease and is often absent in NYHA Class IV patients (18). Likewise, the absolute power of the HF component has been found to be significantly decreased from the early stages of the disease (8, 11). However, HR fluctuations in the HF range are present even in the most advanced stages of CHF, where they can account for most of the short-term HRV (11, 18). To explain this finding, it has been suggested that respiratory sinus arrhythmia in severe CHF might be entirely mediated by nonneural mechanisms (11, 18). Experiments in anesthetized pigs, however, have shown a reduction in neural and nonneural HR oscillations in the HF range with atrial stretch (14), suggesting that nonneural modulation of HR may also be suppressed in patients with CHF.

The present study shows that small HR fluctuations synchronous with breathing persist after GB, and their magnitude is similar in healthy subjects and in patients with mild CHF. These residual HF fluctuations are unlikely to be vagally mediated, since, in the dose range employed in this study, trimethaphan camsylate completely abolished the reflex bradycardia in response to the phenylephrine-induced increase in BP (Fig. 1). Moreover, the LF component was abolished by GB in all subjects (Table 1). Since sympathetic and vagal activities have been shown to contribute to the HRV in this frequency range (23), its disappearance with high doses of trimethaphan camsylate provides further evidence for the adequacy of GB. We also show that, during spontaneous breathing, nonneural mechanisms contribute significantly (i.e., 15%) to the HF power in patients with mild CHF but not in healthy age-matched controls (3%). Since nonneural modulation of HR was preserved in CHF patients, its contribution to the HF component was inversely related to HRV (as assessed by the RR standard deviation, Fig. 5). Taken together, our results indicate that the HF power of the HRV can overestimate cardiac parasympathetic responsiveness in patients with mild CHF and, indeed, whenever the HRV is significantly reduced. This is especially the case when HF is expressed in “normalized” units (i.e., as a percentage of the RR variance) or as LF-to-HF ratio (1). Our findings would have been more dramatic if we had included patients with severe CHF. Indeed, we found that the contribution of nonneural oscillation to the HF component of the HRV was ~50% in four NYHA Class III patients.

Fig. 4. Controlled breathing at 0.16 Hz significantly decreased the contribution of nonneural mechanisms to the HF power of the HRV in healthy controls (○) and patients with CHF (●). Average data are geometric means ± SD. *\(P < 0.005 \), CHF patients vs. controls. †\(P < 0.01 \) vs. spontaneous breathing for both groups.

Fig. 5. Relationship between the RR standard deviation and the nonneural contribution to the HF component in healthy controls (○) and patients with CHF (●) during spontaneous (A, \(r^2 = 0.53 \), \(P < 0.0001 \)) and controlled breathing (B, \(r^2 = 0.50 \), \(P < 0.0001 \)).
acted by the reduction in breathing frequency and $V \dot{I}$ breathing frequencies that gave the same $V \dot{I}$ also re-
limited to their level of cardiac vagal responsiveness. However, the
use of normalized units or of the LF-to-HF ratio in CHF
ated whereas those in the HF range are clearly not, the
in the LF range appear to be entirely neurally medi-
reduced [e.g., during exercise (7)]. Since RR oscillations
ease) or, indeed, whenever the HRV is significantly
patients with CHF (not just in those with terminal dis-
sinus arrhythmia is significantly increased in patients
bution of nonneural mechanisms to the respiratory
main determinant of nonneural HR oscillations, how-
showed to enhance nonneural respiratory sinus ar-
by mechanical stretch (15), and stimulation of mech-
periodic stretching of the sinoatrial node secondary to
mobilization in stretch-induced increase of SA node pace-
Mortara A, La Rovere MT, Signorini MG, Pantaleo P,
we decided to limit our study to less symp-
then be strongly advisable when one attempts to
assess cardiac autonomic control or prognosis by using
spectral analysis of HRV in patients with CHF.
Mechanisms responsible for the nonneural HF oscil-
ations. HR fluctuation in the HF range result from
periodic stretching of the sinoatrial node secondary to
to changes in atrial transmural pressure with breathing
(6, 21). Pacemaking activity is known to be enhanced by
mechanical stretch (15), and stimulation of mechan-
osensitive Cl^- channels has been shown to be at
least in part responsible for this phenomenon (1, 12).
The degree of atrial stretch is dependent on the breath-
ing pattern, and large increases in V_t and V_r have been
shown to enhance nonneural respiratory sinus ar-
rhythmia in heart transplant patients (2, 3, 25).
Simi-
larly, Perlini et al. (21) found that the HF power of the
HRV in anesthetized rabbits after vagotomy and β-
adrenergic blockade was positively correlated with V_t
and, to a smaller extent, breathing frequency. The
main determinant of nonneural HR oscillations, how-
ever, was respiratory flow, and combinations of V_t and
breathing frequencies that gave the same V_t also re-
sulted in similar nonneural HF power (21). Consistent
with these findings, controlled breathing at 0.16 Hz
did not affect the amplitude of the HF component after
GB (Table 1), since the increase in V_t was counter-
acted by the reduction in breathing frequency and V_t
did not change compared with spontaneous breathing
(Table 2).
Summary. This study shows that the relative contribu-
tion of nonneural mechanisms to the respiratory sinus arrhythmia is significantly increased in patients
with mild CHF, accounting on average for 15% (range
1–77%) of the HF component of the HRV (vs. 3% in
controls). These findings suggest that spectral analysis of HRV should be interpreted with caution in all
patients with CHF (not just in those with terminal dis-
 ease) or, indeed, whenever the HRV is significantly reduced [e.g., during exercise (7)]. Since RR oscillations
in the LF range appear to be entirely neurally med-
ated whereas those in the HF range are clearly not, the
use of normalized units or of the LF-to-HF ratio in CHF
patients would lead to a significant overestimation of
the level of cardiac vagal responsiveness. However, the
accuracy of respiratory sinus arrhythmia as a vagal
index can be improved by controlled breathing, since
this maneuver appears to increase the vagal contribu-
tion to respiratory sinus arrhythmia without affecting
its nonneural component.

We gratefully acknowledge the support of the Garfield Weston
Trust and the Norman Collisson Foundation.

REFERENCES
1. Arai A, Kodama I, and Toyama J. Roles of Cl^- channels and
Ca^{++} mobilization in stretch-induced increase of SA node pace-
H1735, 1996.
2. Bernardi L, Keller F, Sanders M, Reddy PS, Griffith B,
Meno F, and Pinsky MR. Respiratory sinus arrhythmia in the
3. Bernardi L, Salvucci F, Suardi R, Soldà PL, Calciati A,
Perlini S, Falcone C, and Ricciardi L. Evidence for an intrin-
sic mechanism regulating heart rate variability in the trans-
planted and the intact heart during submaximal exercise? Cardio-
4. Binkley PF, Nunziata E, Haas GJ, Nelson SD, and Cody
RJ. Parasympathetic withdrawal is an integral component of
autonomic imbalance in congestive heart failure: demonstration
in human subjects and verification in a paced canine model of
5. Bolter CP. Intrinsic cardiac rate regulation in the anaeas-
sinus arrhythmia a good index of cardiac vagal activity during
7. Casolo GC, Stroder P, Sulla A, Chelucci A, Freni A, and
Zerauseck M. Heart rate variability and functional severity
of congestive heart failure secondary to coronary artery disease.
8. Eckberg DL, Drabinski M, and Braunwald E. Defective
parasympathetic control in patients with heart disease. N Engl
9. Francis GS. Neurohumoral mechanisms involved in congestive
10. Guzzetti S, Cogliati C, Turiel M, Crema C, Lombardi F,
and Malliani A. Sympathetic predominance followed by func-
tional denervation in the progression of chronic heart failure.
11. Hagiwara N, Masuda H, Shoda M, and Irisawa H. Stretch-
activated anion currents of rabbit cardiac myocytes. J Physiol
12. Hirsch JA and Bishop B. Respiratory sinus arrhythmia in
humans: how breathing pattern modulates heart rate. Am J
13. Horner SM, Murphy CF, Coen B, Dick DJ, Harrison FG,
Vespaiova Z, and Lab MJ. Contribution to heart rate vari-
ability by mecanoelectric feedback. Stretch of the sinoatrial
node reduces heart rate variability. Circulation 94: 1762–1767,
1996.
on the isolated cat sinoatrial node. Am J Physiol 211: 1192–
1196, 1966.
15. Lombardi F, Malliani A, Pagani M, and Cerutti S. Heart
rate variability and its sympatho-vagal modulation. Cardiovasc
16. Lombardi F, Sandrone G, Porta A, Torzillo D, Terranova
G, Baselli G, Cerutti S, and Malliani A. Spectral analysis of
short term R-T apex interval variability during sinus rhythm
17. Mortara A, La Rovere MT, Signorini MG, Pantaleo P,
Pinna G, Martinelli L, Ceconi C, Cerutti S, and Tavazzi L.
Can power spectral analysis of heart rate variability identify a
high risk subgroup of congestive heart failure patients with
excessive sympathetic activation? A pilot study before and after

