Impaired sarcoplasmic reticulum function leads to contractile dysfunction and cardiac hypertrophy

MARKUS MEYER,1 SUSANNE U. TROST,1 WOLFGANG F. BLUHM,1 HARM J. KNOT,2 ERIC SWANSON,1 AND WOLFGANG H. DILLMANN1
1Department of Medicine, University of California, San Diego, California 92093; and 2Department of Medicine, University of Vermont, Burlington, Vermont 05405

Received 14 October 1999; accepted in final form 31 October 2000

Meyer, Markus, Susanne U. Trost, Wolfgang F. Bluhm, Harm J. Knot, Eric Swanson, and Wolfgang H. Dillmann. Impaired sarcoplasmic reticulum function leads to contractile dysfunction and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 280: H2046–H2052, 2001.—Sarcoplasmic reticulum (SR)-mediated Ca2+ sequestration and release are important determinants of cardiac contractility. In end-stage heart failure SR dysfunction has been proposed to contribute to the impaired cardiac performance. In this study we tested the hypothesis that a targeted interference with SR function can be a primary cause of contractile impairment that in turn might alter cardiac gene expression and induce cardiac hypertrophy. To study this we developed a novel animal model in which ryanodine, a substance that alters SR Ca2+ release, was added to the drinking water of mice. After 1 wk of treatment, in vivo hemodynamic measurements showed a 28% reduction in the maximum speed of contraction \(\frac{dP}{dt_{\text{max}}} \) and a 24% reduction in the maximum speed of relaxation \(-\frac{dP}{dt_{\text{max}}} \). The slowing of cardiac relaxation was confirmed in isolated papillary muscles. The late phase of relaxation expressed as the time from 50% to 90% relaxation was prolonged by 22%. After 4 wk of treatment, the mice had developed a significant cardiac hypertrophy that was accompanied by changes in gene expression of sarcoplasmic (endo)plasmic reticulum Ca2+ (SERCA2), β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF).

Methods

Ryanodine treatment. The animals in this study were handled in accordance with the animal welfare regulations of the University of California, San Diego. The experimental protocol was approved by the local Animal Subjects Committee. A ryanodine stock solution was prepared by adding 1 ml of ethanol and 1 ml of deionized, distilled H2O to 50 mg of a dehydroryanodine-ryanodine mixture (Calbiochem; San Diego, CA). The solution was stored in a light-protected glass container at room temperature for \(<4\) wk. The stock solution was added to the drinking water of CB6 mice in 50-ml Falcon tubes (Fisher Scientific; Springfield, NJ) closed with rubber stopcocks containing the fluid dispenser; these were refilled every second day. In a dose-response study (four animals) the concentration was increased in nine steps from 88 ng/ml to 100 ng/ml in 23%, and left ventricle +13%). This was accompanied by molecular changes including a threefold increase in atrial natriuretic factor mRNA and a sixfold increase in β-myosin heavy chain mRNA. Sarcoplasmic endoplasmic reticulum Ca2+ mRNA was reduced by 18%. These data suggest that selective impairment of SR function in vivo can induce changes in cardiac gene expression and promote cardiac growth.

Methods

Ryanodine treatment. The animals in this study were handled in accordance with the animal welfare regulations of the University of California, San Diego. The experimental protocol was approved by the local Animal Subjects Committee. A ryanodine stock solution was prepared by adding 1 ml of ethanol and 1 ml of deionized, distilled H2O to 50 mg of a dehydroryanodine-ryanodine mixture (Calbiochem; San Diego, CA). The solution was stored in a light-protected glass container at room temperature for \(<4\) wk. The stock solution was added to the drinking water of CB6 mice in 50-ml Falcon tubes (Fisher Scientific; Springfield, NJ) closed with rubber stopcocks containing the fluid dispenser; these were refilled every second day. In a dose-response study (four animals) the concentration was increased in nine steps from 88 ng/ml (0.18 µM) to 100 µg/ml (0.2 mM). After the death of one animal at 100 µg/ml, the surviving animals were killed and

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
the organs were examined. Heart weight-to-body weight ratios were found to be increased in the three remaining animals. In a subsequent study, three concentrations of ryanodine (10, 50, and 100 μg/ml) were tested over a 4-wk period. At the 100 μg/ml dose, three of four mice died within 2 wk. At this concentration the animals showed reduced grooming and activity. At the 50 μg/ml dose, animals were not obviously different from untreated controls except that they appeared to be more exhausted when caught from their cages; one of four animals died during 4 wk of treatment, whereas all animals survived the 10 μg/ml dose. Owing to a significant increase in the heart weight-to-body weight ratio at the 50 μg/ml dose, we chose this as the final concentration for all subsequent experiments.

In vivo hemodynamic measurements. For 1 wk, 12 mice were treated and 10 age-matched control mice were anesthetized with a mixture of thiobutabarbital (100 mg/kg) and ketamine (100 mg/kg). Electrocardiogram and body temperature were monitored. The animals were ventilated with room air. The right jugular vein and right carotid artery were cannulated, and a bilateral vagotomy was performed. After a left-sided thoracotomy, a pressure transducer (1.8-Pr, Millar Instruments; Houston, TX) was inserted into the left atrium (LA) and advanced into the left ventricle (LV). Continuous LV pressure and aortic pressure were recorded. After measurement of the basal values, increasing doses of isoproterenol (5–1,000 ng iv) were given as a bolus. Heart rate (HR), carotid mean arterial pressure (MAP), LV systolic pressure (LVSP), LV end-diastolic pressure (LVEDP), and the maximum values of LV pressure derivatives (+dP/dt max, −dP/ dP max) were analyzed.

Isolated papillary muscle experiments. Five mice were treated with ryanodine for 1 wk, and the contractile behavior of a LV papillary muscle preparation was compared with papillary muscle preparations of eight age-matched control mice as previously described (7). Briefly, left papillary muscles were cut from the LV in Tyrode solution containing (in mM): 140 LiCl, 6 KCl, 1 MgCl2, 10 HEPES, 10 glucose, and 0.5 EGTA adjusted to pH 7.4 with LiOH. In addition, papillary muscles of four animals treated for 4 wk were obtained to study basal contractile function.

Northern and Western analyses. Ventricular RNA was isolated from mice treated for different times (day 2 to day 4, n = 2 each day; 4 wk, n = 6) and age-matched control animals (n = 6). After electrophoresis, the RNA was transferred and hybridization was performed with restriction fragments of the cDNA of rat SERCA2a, rat ANF, mouse phospholamban, rabbit cardiac ryanodine receptor (RyR2), and an oligo specific to the rat β-MHC. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) message levels were determined on all blots to control for equal loading. For Western blot analysis, ventricular homogenates were prepared from mice treated for 4 wk (n = 8) and age-matched control mice (n = 8). The samples (15 μg of protein) were resolved on a 4–20% gradient gel (Novex; San Diego, CA), blotted, and exposed to monoclonal antibodies directed against β-MHC (J. J. Leger, Institut National de la Santé et de la Recherche Médicale; Montpellier, France), α-actin (Sigma; St. Louis, MO), phospholamban (ABR; Golden, CO), and a polyclonal antibody against SERCA2 (7). After incubation with horseradish peroxidase-labeled secondary antibodies, a chemiluminescence reaction (Amersham; Arlington Heights, IL) was initiated and detected by autoradiography. All films were analyzed with NIH Image 1.61 software. Western data were normalized by α-actin. Linearity of the chemiluminescence signals for the different proteins was confirmed by loading different amounts of a standard sample.
RESULTS

Characteristics of ryanodine-treated animals. When ryanodine-treated animals (50 μg/ml drinking water = 0.1 mM) were anesthetized with ketamine and xylazine (300 and 15 mg/kg, respectively), some mice gradually developed a skeletal muscle rigor that was most prominent in the hindlimbs. When the abdominal cavity was opened, distended intestines were frequently present. When opening of the thoracic cavity, the atria appeared visibly enlarged, whereas the ventricles were normal in size. Total heart weight-to-body weight ratio was significantly increased by 19% after 4 wk of ryanodine treatment (6.1 ± 0.1, n = 19 vs. 5.1 ± 0.1, n = 16; P < 0.01). The separate analysis of atria and ventricles revealed a global hypertrophy with a pronounced increase in atrial weights. Normalized right atrium (RA) weight was increased 2.15-fold (0.28 ± 0.03, n = 9 vs. 0.13 ± 0.02, n = 6; P < 0.01), and normalized LA weight was increased 2-fold (0.34 ± 0.03, n = 9 vs. 0.17 ± 0.04, n = 6; P < 0.01). The increase in normalized right ventricular (RV) weight was 23% (1.00 ± 0.05, n = 9 vs. 0.81 ± 0.03, n = 6; P < 0.05), and the normalized LV weight was increased by 13% (4.00 ± 0.13, n = 9 vs. 3.54 ± 0.04, n = 6; P < 0.05). At 1 wk of treatment no significant difference was found (Table 1). The 4-wk mortality rate was 30%.

Hemodynamic effects of ryanodine treatment. In mice treated for 1 wk no difference in heart rate was found (Table 2). MAP under closed-chest conditions was 82 ± 5 mmHg in 10 control mice and 69 ± 4 mmHg in 12 ryanodine-treated animals (P < 0.05). The effects of isoproterenol stimulation on MAP (open chest) and LVSP did not show significant differences between ryanodine-treated animals and the control group. LVEDP was not different under either baseline conditions or isoproterenol stimulation. The maximum rise of systolic pressure in ryanodine-treated animals was reduced by 28% compared with control mice (3,903 ± 499 vs. 5,419 ± 456 mmHg/s; P < 0.05). This difference in the speed of contraction was accompanied by a 24% decrease in the maximum decline of LV pressure (=dP/dt) as an index of relaxation (-5,204 ± 337 mmHg/s; P < 0.01).

Two separate attempts to measure the hemodynamic function after 4 wk of treatment failed due to the death of all animals shortly after injection of the anesthetic agents. However, functional papillary muscles could be recovered from these hearts by quickly excising and submerging them in BDM-Tyrode solution.

Papillary muscle function and Ca2+ handling. To characterize the contractile effects of ryanodine treatment on LV papillary muscle preparations, we studied isometric force development, postrest behavior, Ca2+ transients, RCCs, and the force-frequency relation. Papillary muscle preparations were obtained from mice treated for 1 wk. Developed stress at a stimulation frequency of 2 Hz was found to be significantly reduced in papillary muscle preparations from ryanodine-treated mice (6.4 ± 1.3 mN/mm², n = 8 vs. 2.3 ± 0.4 mN/mm², n = 8).

Table 1. Organ and heart weights in mice after 1 and 4 wk of ryanodine treatment compared with age-matched controls

<table>
<thead>
<tr>
<th></th>
<th>Control, 1 wk</th>
<th>Ryanodine, 1 wk</th>
<th>Control, 4 wk</th>
<th>Ryanodine, 4 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW, g</td>
<td>23.5 ± 0.5</td>
<td>22.7 ± 0.6*</td>
<td>25.3 ± 0.6</td>
<td>24.3 ± 0.4*</td>
</tr>
<tr>
<td>Liver, mg</td>
<td>927 ± 12</td>
<td>872 ± 55*</td>
<td>1,158 ± 65</td>
<td>1,090 ± 43*</td>
</tr>
<tr>
<td>Lung, mg</td>
<td>158 ± 6</td>
<td>144 ± 4*</td>
<td>163 ± 3</td>
<td>172 ± 2*</td>
</tr>
<tr>
<td>HW/BW, mg/g</td>
<td>4.6 ± 0.2</td>
<td>4.9 ± 0.1*</td>
<td>5.1 ± 0.1</td>
<td>6.1 ± 0.1†</td>
</tr>
<tr>
<td>RV/BW, mg/g</td>
<td>0.69 ± 0.07</td>
<td>0.73 ± 0.03*</td>
<td>0.81 ± 0.03</td>
<td>1.00 ± 0.05‡</td>
</tr>
<tr>
<td>LV/BW, mg/g</td>
<td>3.39 ± 0.09</td>
<td>3.62 ± 0.08*</td>
<td>3.54 ± 0.04</td>
<td>4.00 ± 0.13‡</td>
</tr>
<tr>
<td>RA/BW, mg/g</td>
<td>0.18 ± 0.06</td>
<td>0.15 ± 0.03*</td>
<td>0.13 ± 0.02</td>
<td>0.28 ± 0.03†</td>
</tr>
<tr>
<td>LA/BW, mg/g</td>
<td>0.18 ± 0.06</td>
<td>0.19 ± 0.03*</td>
<td>0.17 ± 0.04</td>
<td>0.34 ± 0.03†</td>
</tr>
<tr>
<td>Diameter, μm</td>
<td>n.d.</td>
<td>n.d.</td>
<td>27.6 ± 1.3</td>
<td>31.9 ± 0.6†</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, no. animals studied. Dose of ryanodine was 50 μg/ml drinking water. BW, body weight; HW, total heart weight; RV, right ventricle weight; LV, left ventricle weight; RA, right atrium weight; LA, left atrium weight; n.d., not determined. Diameter, smallest transversal diameter in a nucleated transverse section of randomly analyzed myocytes (>85 per heart). *P = not significant; †P < 0.01; ‡P < 0.05.

Table 2. Basal hemodynamic characteristics after 1 wk of ryanodine treatment compared with control mice

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 10)</th>
<th>Ryanodine (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, g</td>
<td>23.5 ± 0.7</td>
<td>22.0 ± 0.6*</td>
</tr>
<tr>
<td>Heart weight, mg</td>
<td>107 ± 5</td>
<td>119 ± 5*</td>
</tr>
<tr>
<td>Heart rate (closed chest), beats/min</td>
<td>451 ± 20</td>
<td>432 ± 19*</td>
</tr>
<tr>
<td>MAP (closed chest), mmHg</td>
<td>82 ± 5</td>
<td>69 ± 4</td>
</tr>
<tr>
<td>LVSP, mmHg</td>
<td>71 ± 3</td>
<td>61 ± 3*</td>
</tr>
<tr>
<td>LVEDP, mmHg</td>
<td>5.419 ± 456‡</td>
<td>3.903 ± 499‡</td>
</tr>
<tr>
<td>+dP/dt max, mmHg/s</td>
<td>1.3 ± 0.5</td>
<td>1.8 ± 0.7*</td>
</tr>
<tr>
<td>-dP/dt max, mmHg/s</td>
<td>-5,204 ± 337</td>
<td>-3,934 ± 277‡</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, no. of animals. Ryanodine dose was 50 μg/ml drinking water. MAP, mean arterial pressure; LVSP, left ventricular systolic pressure; LVEDP, left ventricular end-diastolic pressure; +dP/dt max, maximal rise of left ventricular pressure; -dP/dt max, maximal decline of left ventricular pressure. *P = not significant; †P < 0.01; ‡P < 0.05.
0.4 mN/mm², n = 5; P < 0.05). At higher stimulation frequencies the difference in developed stress was not statistically significant. In four muscle strips obtained from ryanodine-treated animals additional ryanodine (10 μM) was added to the isometrically contracting preparation in vitro. Developed stress decreased by 86 ± 2% (2.6 ± 0.4 vs. 0.4 ± 0.1 mN/mm²; P < 0.01).

As shown in Fig. 1, time to peak tension was slightly but significantly reduced by 11% in papillary muscles from five ryanodine-treated mice compared with eight papillary muscles from control animals (41.8 ± 1.8 vs. 47.0 ± 1.8 ms; P < 0.05). The first phase of relaxation (time from peak tension to 50% relaxation) was unaffected by the ryanodine treatment. However, the late phase of relaxation (time from 50% relaxation to 90% relaxation) was markedly prolonged by 29% (45.0 ± 2.9 vs. 35.0 ± 1.4 ms; P < 0.01). Postrest behavior of isolated papillary muscles was completely inverted by the ryanodine treatment (P < 0.01). In papillary muscles from untreated control mice, a short rest interval from 0.5 to 15 s was always followed by a postrest beat that was larger than the previous steady-state beats. In sharp contrast to this postrest potentiation, all papillary muscles from ryanodine-treated mice displayed rapid postrest decay (Fig. 2, A and B). This observation, which indicates a time-dependent loss of SR Ca²⁺, was confirmed by fluo 4 measurements and RCCs. In papillary muscles from control mice both fluo transients and RCCs increased with prolonged rest intervals, whereas these values were always reduced in ryanodine-treated animals (Fig. 2, B and C). Single-contraction recordings of force and Ca²⁺ transients under steady-state conditions (2 Hz) and postrest contractions after rest intervals of 1 and 15 s are shown in Fig. 3.

In addition the force-frequency relation was affected by treatment with ryanodine (P < 0.01). In papillary muscles obtained from control animals, developed stress decreased with each subsequent increase in frequency (negative force-frequency relation). In compar-

Fig. 1. Basal time indices of isometric contractions in left ventricular (LV) papillary muscles stimulated at 2 Hz after 1 and 4 wk of ryanodine (Rya) treatment (50 μg ryanodine per ml drinking water) compared with papillary muscles from untreated control animals. Time to peak tension (TPT) and the times from peak tension to 50% and 90% relaxation (RT₅₀ and RT₉₀, respectively) were determined. Time from 50% relaxation to 90% relaxation (RT₅₀₋₉₀) was used as a parameter for the late phase of relaxation. All data depict means ± SE; *P < 0.05.

Fig. 2. Mouse papillary muscle experiments after 1 wk of ryanodine treatment (●) compared with age-matched control animals (○). A: postrest (PR) contractile behavior of isolated papillary muscles. Regular stimulation at a 2-Hz stimulation frequency was suspended for rest intervals ranging from 0.5–15 s. Data show the stress of the first PR beat when regular stimulation was resumed. All papillary muscles from control mice displayed PR potentiation. In contrast, PR decay was observed in all papillary muscles obtained from mice treated with ryanodine for 1 wk. B: PR data at 1- and 15-s rest intervals in four fluo 4-acetoxymethyl ester (fluo 4-AM)-loaded papillary muscles. Isometric contraction of PR beat and fluo-4 Ca²⁺ transients are shown. C: rapid cooling contracture (RCC) was induced in papillary muscles from control animals and ryanodine-treated animals. All preparations from control animals showed a potentiation of the RCCs from 1–15 s, whereas all papillary muscles of ryanodine-treated animals showed greatly abolished RCCs, indicating a depletion of the sarcoplasmic reticulum (SR) Ca²⁺ stores. D: force-frequency behavior of isolated papillary muscles from ryanodine-treated animals and control animals. The frequency was stepwise increased from 2 to 6 Hz. Actively developed stress was measured at each frequency after steady state had been reached. All data depict means ± SE.
ison, papillary muscles from ryanodine-treated animals displayed an increase in developed stress up to 4 Hz (positive force-frequency relation) followed by a small decrease in developed stress to 6 Hz (Fig. 3). These differences were statistically substantiated by comparing the normalized force-frequency behavior (3–6 Hz all $P < 0.01$).

In four animals treated for 4 wk, we obtained papillary muscles and analyzed the time parameters at 2 Hz (Fig. 1). Time to peak tension was not significantly altered. The time from peak tension to 50% relaxation was significantly prolonged by 30% (49.1 ± 3.5 vs. 37.9 ± 0.9 ms; $P < 0.05$). The late phase of the relaxation expression as the time from 50% to 90% relaxation, which was increased by 29% after 1 wk of treatment was increased by 134% after 4 wk (82.0 ± 9.6 vs. 35.0 ± 1.4 ms; $P < 0.01$) indicating a much more pronounced disturbance of cardiac relaxation. Postrest potentiation and the force-frequency behavior remained inverted after 4 wk of treatment but could be restored to normal after removing the ryanodine from the drinking water (data not shown).

Molecular changes. In animals treated with 50 µg/l ryanodine in drinking water for 4 wk, steady-state message levels for several mRNAs were analyzed. GAPDH normalized ANF, and β-MHC message levels were increased threefold ($n = 6$ in both groups; $P < 0.01$) and sixfold ($P < 0.01$), respectively. Normalized SERCA2a mRNA levels were downregulated by 18% ($P < 0.01$). No significant differences in gene expression of phospholamban and RyR2 were detected. Representative blots are shown in Fig. 4. To test whether changes in expression levels occur already in the first days of ryanodine administration, we obtained hearts at days 2, 3, and 4. Compared with untreated control animals, ANF mRNA was unaltered at day 2, increased by 33% at day 3, and increased by 67% at day 4, whereas SERCA2a levels decreased by 10% at day 2, 22% at day 3, and 28% at day 4. Because changes of mRNA do not always translate into changes in protein levels, Western blots of ventricular tissue after 4 wk of
Table 3. Specific [3H]ryanodine binding and 45Ca2+ uptake in ventricular homogenates after 4 wk of ryanodine treatment compared with untreated controls

<table>
<thead>
<tr>
<th>Ryanodine (50 μg/ml drinking water)</th>
<th>Control</th>
<th>Ryanodine</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3H]ryanodine binding, fmol/μg protein</td>
<td>395 ± 25</td>
<td>412 ± 25*</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Sarcoplasmic reticulum 45Ca2+ uptake, nM·mg⁻¹·s⁻¹</td>
<td>5.36 ± 0.26</td>
<td>4.65 ± 0.43*</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, no. of animals. Ryanodine binding was calculated from the binding of 15 nmol/l of [3H]ryanodine to ventricular homogenates minus background binding in the presence of 10 μmol/l of unlabeled ryanodine (1 h, 37°C). 45Ca2+ uptake was performed in ventricular homogenates at 32°C. *P ≠ not significant.

treatment were performed. Actin-normalized SERCA2 and phospholamban levels were not significantly changed, whereas β-MHC protein expression was markedly induced (Fig. 4B). The increase in β-MHC protein expression was not different in the LV versus the RV (data not shown).

To quantify SR Ca2+ channels, ventricular homogenates were labeled with [3H]ryanodine. No difference in specific [3H]ryanodine binding was found between groups (Table 3). This finding suggests that only a very small fraction of ryanodine binding sites were actually occupied by the orally administered ryanodine, because occupied binding sites lower the binding of the radiolabeled ryanodine.

To study SERCA2 activity, a Ca2+-uptake study was performed in ventricular homogenates (Table 3). Although there was a trend toward decreased uptake levels, it did not reach statistical significance.

Cardiac histology. No obvious differences between control hearts and hearts from treated animals (such as myocyte density and presence of connective tissue and inflammatory cells) were found. The ventricles appeared to be diffusely hypertrophied without signs of regional hypertrophy. The shortest transverse diameter of nucleated sections of LV myocytes was increased by 16% in three ryanodine-treated animals compared with three normal hearts (31.9 ± 0.6 vs. 27.6 ± 1.3 μm; P < 0.01) providing direct evidence for myocyte hypertrophy.

DISCUSSION

To test whether a SR-induced cardiac dysfunction can induce cardiac hypertrophy, mice were treated with ryanodine, a highly specific inhibitor of the SR Ca2+ channel. An animal model was developed in which mice were treated by adding ryanodine to the drinking water. As early as 3 days after the ryanodine treatment was started, cardiac ANF expression was markedly increased and SERCA2a mRNA was decreased. These changes were accompanied by impaired cardiac performance as seen in hemodynamic studies and papillary muscle experiments. Ryanodine-treated animals displayed a marked slowing of the maximum speeds of contraction and relaxation in vivo and isolated papillary muscle preparations from treated animals had a decrease in actively developed stress and a prolongation of the late phase of relaxation. Analysis of postrest behavior of contractile force and Ca2+ transients in isolated tissue revealed that the postrest potentiation in control papillary muscles was inverted to a postrest decay in ryanodine-treated animals. This suggested that ryanodine had rendered some cardiac SR Ca2+ channels to an open locked state and allowed Ca2+ to leak out of the SR during prolonged rest periods. This finding, which has been reported under in vitro conditions at nanomolar concentrations of ryanodine (22), was further confirmed by RCCs. This experiment showed that the SR Ca2+ stores in ryanodine-treated animals could be depleted during prolonged rest periods. This leak-induced reduction in SR Ca2+ load presents the most likely explanation for the observed prolongation of cardiac contractions both in vitro and in vivo (2). Interestingly, we did not detect a decreased binding of [3H]ryanodine in myocardium of treated animals, which suggests that the fraction of occupied ryanodine binding sites in the treated animals is very small. This indicates, however, that even a small number of defective Ca2+ channels can disturb cardiac function profoundly. Because the ryanodine-induced SR dysfunction depends on the length of the time interval between two contractions, a lower stimulation rate facilitates SR Ca2+ depletion. We found this reflected in the inversion of the force-frequency relation. With prolonged rest intervals (low frequencies) the Ca2+ from the SR leaks from the SR back into the cytoplasm from where it is eliminated to the extracellular space via alternative Ca2+ transport mechanisms such as the sarcolemmal Na+/Ca2+ exchanger, resulting in lower steady-state forces (1, 5).

Attempts to measure hemodynamic function in animals that were treated for 4 wk failed due to the death of all animals shortly after the initiation of anesthesia. This finding suggests an increase in the severity of the cardiac dysfunction after prolonged periods of ryanodine treatment and was confirmed in the papillary muscles obtained from these animals. Compared with the changes in papillary muscle function after 1 wk of treatment, we found a greatly increased delay in cardiac relaxation, which indicates a further deterioration of diastolic function. In the ventricular tissue obtained from animals treated for 4 wk, ANF and β-MHC mRNA remained markedly induced, whereas SERCA2a mRNA was significantly reduced. Gene expression of phospholamban and cardiac ryanodine receptors were not altered. Although SERCA2a mRNA levels were decreased, protein levels and Ca2+ transport activity were not significantly reduced. In contrast, β-MHC protein levels were markedly induced in the treated animals. These findings were accompanied by a global cardiac hypertrophy with dilated atria and increased normalized LV and RV weights. Analysis of histological sections of the hearts from ryanodine-treated animals showed increased cross-sectional diameters in LV
Heart Association.
in-Aid 9860037T from the New England Affiliate of the American
HL-49434–01 to W. H. Dillmann. H. J. Knot is supported by Grant-
work was supported by National Institutes of Health RO1 Grant
from the Whittier Institute Research Program; and W. F. Bluhm was
impaired SR function could present a potential mech-
channels can profoundly alter cardiac function. From a
end-stage heart failure are reported to
eorystory hypertrophy. This could promote a vicious circle
-2 channels in human end-stage heart failure (3, 19), single-channel record-
growth. From these findings it may be speculated that
detrimental to cardiac contractility. In the ryano-
tory hypertrophy. This could promote a vicious circle
MHS may further slow cardiac contraction. In other
animal models of heart failure and in human disease,
reduced SERCA2 activity and/or depressed levels of
of failure and hypertrophy by further reducing cardiac
-2MHC may further slow cardiac contraction. In other
b
are detrimental to cardiac contractility. In the ryano-
tory hypertrophy. This could promote a vicious circle
H2052 RYANODINE-INDUCED SR DYSFUNCTION AND HYPERTROPHY
2.
2.
Bers DM and Berlin JR.
1.
Bers DM.
4.
De la Bastie D, Levitsky D, Rappaport L, Mercadier JJ,
3.
Circula-
19.
Hoyer S, Hofer K, Funk R, Ruggeri N, and Yacoub M.
18.
Nakarai S and Sano T.
17.
Morgan JP.
16.
Lorell BH.
15.
Lew WYW.
14.
Kai H, Muraishi A, Sugita Y, Nishi H, Seki Y, Kuwahara F,
13.
Kalthof B, Sato N, Iwase M, Shen Y-T, Mirsky I, Patrick
12.
Kahn M, Shiffman I, Kuhn LA, and Jacobson TE.
11.
Lew WYW.
10.
Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V,
9.
Imagawa T, Smith J, Coronado R, and Campbell K.
8.
Holmberg SRM and Williams AJ. Single channel recordings
from human cardiac sarcoplasmic reticulum. Circ Res 65: 1445–
1449, 1989.
7.
Hayashida R, Arakawa T, and Kukita A.
6.
Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B,
5.
Hajdu S. Mechanism for the Woodworth staircase phenomenon
4.
De la Bastie D, Levitsky D, Rappaport L, Mercadier JJ,
3.
Circula-
2.
Sweat F, Puchtler H, and Rosenthal SL. Sirius red F3BA as a
1.
Bers DM. Excitation-contraction Coupling and Cardiac Con-
2.
Bers DM and Berlin JR. Kinetics of decline in cardiac myo-
cytes depend on peak [Ca]. Am J Physiol Cell Physiol 268:
3.
D’Agnolo A, Luciani GB, Mazzucco A, Gallucci V, and
Saviliar G. Contractile properties and Ca2+ release activity of
the sarcoplasmic reticulum in dilated cardiomyopathy. Circula-
4.
De la Bastie D, Levitsky D, Rappaport L, Mercadier JJ,
Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, and
Lompre AM. Functional and molecular characterization of the
sarcalmembrane Ca2+ release channel. J Mol Cell Cardiol
5.
Hajdu S. Mechanism for the Woodworth staircase phenomenon
6.
Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B,
Holtz J, Holubarsch C, Posival J, Just H, and Drexler H.
Relation between myocardial function and expression of sarco-
plasmic reticulum Ca2+-ATPase in failing and nonfailing human
7.
He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman
HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR,
Swanson E, and Dillmann WH. Overexpression of the rat
sarcoplasmic reticulum (SR) Ca2+ ATPase gene in the heart of
transgenic mice accelerates calcium transients and cardiac re-
8.
Holmberg SRM and Williams AJ. Single channel recordings
from human cardiac sarcoplasmic reticulum. Circ Res 65: 1445–
1449, 1989.
9.
Imagawa T, Smith J, Coronado R, and Campbell K. Purified
ryanodine receptor from muscle sarcoplasmic reticulum is the
Ca2+-permeable pore of the calcium release channel. J Biol
10.
Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V,
Fraznini-Armstrong C, Cleemann L, and Morad M. Regu-
lation of Ca2+–signaling in transgenic mouse cardiac myocytes
overexpressing calsequestrin. J Clin Invest 101: 1385–1390,
1998.
11.
Kahn M, Shiffman I, Kuhn LA, and Jacobson TE. Effects of
ryanodine in normal dogs and in those with digitalis-induced
12.
Kai H, Muraishi A, Sugita Y, Nishi H, Seki Y, Kuwahara F,
Kimura A, Kato H, and Imaizumi T. Expression of proteo-
concenes and gene mutation of sarcomeric proteins in patients
13.
Kalthof B, Sato N, Iwase M, Shen Y-T, Mirsky I, Patrick
TA, and Vatner SF. Effects of ryanodine on cardiac contraction,
excitation-contraction coupling and “treppe” in the conscious
14.
Lew WYW. Mechanisms of volume-induced increase in left ven-
tricular contractility. Am J Physiol Heart Circ Physiol 265:
15.
Lorell BH. Transition from hypertrophy to failure. Circulation
16.
Marois RL. The negative inotropic effect of ryanodine on the
17.
Morgan JP. Abnormal intracellular modulation of calcium as a
major cause of cardiac contractile dysfunction. N Engl J Med
18.
19.
Pieske B, Sutterlin M, Schmidt-Schweda S, Minami K,
Meyer M, Olsheskiw M, Holubarsch C, Just H, and
Hasenfuss G. Diminished post-rest potentiation of contractile
force in human dilated cardiomyopathy. Functional evidence for
776, 1996.
20.
Prabhu SD, Rozek MM, Murray DR, and Freeman GL.
Ryanodine and left ventricular function in intact dogs: dissocia-
tion of force-based and velocity-based indexes. Am J Physiol
21.
Procula L. Some pharmacological actions of ryanodine in the
22.
Rousseau R, Smith JS, and Meissner G. Ryanodine modifies
conductance and gating behavior of single Ca2+ release channel.
23.