Vascular endothelial dysfunction: does tetrahydrobiopterin play a role?

ZVONIMIR S. KATUSIC
Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905

Katusic, Zvonimir S. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol 281: H981–H986, 2001.—Tetrahydrobiopterin is one of the most potent naturally occurring reducing agents and an essential cofactor required for enzymatic activity of nitric oxide synthase (NOS). The exact role of tetrahydrobiopterin in the control of NOS catalytic activity is not completely understood. Existing evidence suggests that it can act as allosteric and redox cofactors. Suboptimal concentration of tetrahydrobiopterin reduces formation of nitric oxide and favors “uncoupling” of NOS leading to NOS-mediated reduction of oxygen and formation of superoxide anions and hydrogen peroxide. Recent findings suggest that accelerated catabolism of tetrahydrobiopterin in arteries exposed to oxidative stress may contribute to pathogenesis of endothelial dysfunction present in arteries exposed to hypertension, hypercholesterolemia, diabetes, smoking, and ischemia-reperfusion. Beneficial effects of acute and chronic tetrahydrobiopterin supplementation on endothelial function have been reported in experimental animals and humans. Furthermore, it appears that beneficial effects of some antioxidants (e.g., vitamin C) on vascular function could be mediated via increased intracellular concentration of tetrahydrobiopterin. In this review, the potential role of tetrahydrobiopterin in the pathogenesis of vascular endothelial dysfunction and mechanisms underlying beneficial vascular effects of tetrahydrobiopterin will be discussed.

Address for reprint requests and other correspondence: Z. S. Katusic, Depts. of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St., SW, Rochester, MN 55905 (E-mail: katusic.zvonimir@mayo.edu).

Nitric oxide; oxidative stress; vitamin C

NITRIC OXIDE plays a key role in vascular homeostasis affecting wide range of functions, including local control of blood vessel diameter and tissue blood flow (10). Biosynthesis of nitric oxide is dependent on enzymatic activity of nitric oxide synthase (NOS). Three distinct NOS isoforms have been identified by molecular cloning: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS). Tetrahydrobiopterin is a cofactor essential for the catalytic activity of all three NOS isoforms (11, 23, 27, 37). During the last 10 years, significant progress has been made in understanding the role of tetrahydrobiopterin in the control of NOS function. Tetrahydrobiopterin has profound effects on the structure of NOS, including the ability to shift its heme iron to a high spin state, increase arginine binding, and stabilize the active dimeric form of the enzyme (11). There is also evidence that NOS-bound tetrahydrobiopterin may act as a redox-active cofactor, but unlike aromatic amino acid hydroxylases where the fully reduced pterin serves as a reducing agent for oxygen, NOS is not coupled to dihydropteridin reductase as a tetrahydrobiopterin-regenerating system (11). The exact redox mechanism by which tetrahydrobiopterin participates in the biosynthesis of nitric oxide is still not understood (11). However, accumulated evidence indicates that optimal concentration of tetrahydrobiopterin is of fundamental importance for normal function of eNOS and vascular endothelial cells. This review will focus on the potential role of tetrahydrobiopterin in the pathogenesis of endothelial dysfunction and vascular disease.
ENDOTHELIAL DYSFUNCTION

Normal vascular endothelial cells support cardiovascular function by promoting vasodilatation and by inhibiting platelet aggregation, white blood cell adhesion, and smooth muscle cell proliferation. In contrast, dysfunctional endothelium promotes vasocostriction, favors platelet aggregation, white blood cell adhesion, and smooth muscle cell proliferation. It is now well established that the endothelium becomes dysfunctional in arteries chronically exposed to cardiovascular risk factors. Hypercholesterolemia, hyperglycemia, hypertension, and smoking are the most common risks associated with endothelial dysfunction. Although the molecular basis of endothelial dysfunction is not completely understood, numerous studies point to the loss of nitric oxide biological activity and/or biosynthesis as a central mechanism (9). Restoration of normal nitric oxide levels in diseased arteries is a major therapeutic goal and could be achieved by several different classes of drugs, including nitric oxide donors, L-arginine, statins, angiotensin-converting enzyme inhibitors, antioxidants, and estrogen replacement. More recently, eNOS gene transfer technology has also been employed in attempts to normalize endothelial function in diseased arteries (3). Realization that availability of tetrahydrobiopterin may also affect nitric oxide production in endothelial cells provided the rationale for supplementation with exogenous tetrahydrobiopterin. During the last couple of years, successful restoration of endothelial function by short-term administration of tetrahydrobiopterin has been achieved in patients with hypercholesterolemia and atherosclerosis, and in smokers (13, 25, 35, 42). Although the exact mechanism underlying the beneficial effect of tetrahydrobiopterin is still unknown, the most likely explanation is increased production of nitric oxide due to activation of eNOS.

In the early 1990s biochemical studies demonstrated that in the presence of suboptimal concentrations of tetrahydrobiopterin, activation of nNOS leads to “uncoupling” of NOS with subsequent increased formation of superoxide anions and hydrogen peroxide (12, 30). These findings have been confirmed and extended to eNOS (43, 46, 47), suggesting that in endothelial cells consumption of NADPH can become uncoupled from nitric oxide synthesis, resulting in the production of superoxide anions and hydrogen peroxide (Fig. 1). It is important to note that a series of in vitro biochemical studies demonstrated that eNOS is the most “tightly coupled” of the NOS isoforms (26), implying that nNOS and iNOS are potentially more powerful sources of reactive oxygen species. Definitive in vivo evidence that “uncoupling” of eNOS is an important mechanism of endothelial dysfunction is missing. However, this hypothesis continues to attract attention of vascular biologists. At the present time, it is generally accepted that reduced availability of tetrahydrobiopterin causes reduction in nitric oxide production, and that enzymatic activity of “uncoupled” NOS could be a source of reactive oxygen species. It appears that supplementation with exogenous tetrahydrobiopterin can restore normal nitric oxide biosynthesis by providing optimal conditions for NOS catalytic activity.

Early studies on cultured endothelial cells demonstrated that indeed, an increase in intracellular tetrahydrobiopterin levels stimulates eNOS activity (45). Interestingly, a study by Rosenkranz-Weiss et al. (31) demonstrated that tetrahydrobiopterin levels are significantly higher in freshly isolated endothelial cells than in cultured endothelial cells. Culturing endothelial cells causes loss of tetrahydrobiopterin. The mechanism responsible for the loss of tetrahydrobiopterin is not completely understood, but it is known that in the cell culture tetrahydrobiopterin efflux dominates over cell retention (11). This finding suggests that results obtained with cultured endothelial cells may not be representative of the changes in tetrahydrobiopterin metabolism that occur in intact arteries. Our measurements of tetrahydrobiopterin levels in normal arteries demonstrated that more than 60% of total tetrahydrobiopterin is present in endothelial cells (40), revealing that a single layer of endothelial cells has a higher content of tetrahydrobiopterin than media and adventitia together. High capacity of endothelium to synthesize tetrahydrobiopterin most likely reflects an important role of this pterin in regulation of endothelial function. Pharmacological or genetic manipulation of tetrahydrobiopterin availability provided initial insight into possible consequences of tetrahydrobiopterin deficiency on endothelial function. Studies on isolated aorta, coronary, and cerebral arteries demonstrated that inhibition of tetrahydrobiopterin production causes alterations or impairment of endothelial function (6, 7, 20). Similar observations were made in coronary microcirculation (39). These findings were in...
agreement with results obtained in experiments with cultured endothelial cells, and they supported the idea that availability of tetrahydrobipterin in endothelial cells may affect NOS activity and ultimately the production of nitric oxide. Obviously, the next step required better understanding of tetrahydrobipterin biosynthesis in normal and diseased blood vessels.

Metabolism of tetrahydrobipterin in the vascular wall has not been systematically studied. Very little is known about catabolism of tetrahydrobipterin in living cells. Turnover of tetrahydrobipterin in blood vessels appears to be very rapid. In isolated canine basilar arteries 6 h of incubation with GTP cyclohydrolase I inhibitor DAHP resulted in 95% depletion of intracellular tetrahydrobipterin (20). This raised the possibility that excessive oxidation of tetrahydrobipterin may contribute to the pathogenesis of endothelial dysfunction. In 1997 we proposed that tetrahydrobipterin could be an important molecular target for oxidative stress (21). During the last four years, several groups, including our own, have tested this hypothesis and considerable progress has been made.

EFFECT OF OXIDATIVE STRESS ON TETRAHYDROBIPTERIN METABOLISM

Tetrahydrobipterin is one of the most potent naturally occurring reducing agents. It is therefore reasonable to hypothesize that oxidative stress may lead to excessive oxidation and depletion of tetrahydrobipterin. Indeed, peroxynitrite does oxidize tetrahydrobipterin under in vitro conditions (24, 28). Laursen et al. (24) provided the first evidence that in intact arteries oxidation of tetrahydrobipterin by peroxynitrite may have important implications for the pathogenesis of endothelial dysfunction. Their findings strongly support the idea that tetrahydrobipterin is a molecular target for oxidative stress and that oxidation of tetrahydrobipterin may cause “uncoupling” of eNOS. Consistent with these findings, recent studies demonstrated that vitamin C stimulates NOS via chemical stabilization of tetrahydrobipterin in cultured human umbilical vein endothelial cells (14, 16). This effect of vitamin C appears to be independent of the chemical antagonism between vitamin C and superoxide anions (2). The chemical nature of oxidants responsible for oxidation of tetrahydrobipterin is unclear and remains to be determined. These in vitro studies reinforced the concept that in vascular endothelial cells, prooxidant conditions can accelerate catabolism of tetrahydrobipterin. Most importantly, these findings could help to explain the mechanisms underlying the beneficial effect of vitamin C (and possibly some other antioxidants) on vascular endothelial function. However, it is important to keep in mind that protection of tetrahydrobipterin with vitamin C has not been demonstrated in vivo. Our preliminary findings indicate an increased dietary intake of vitamin C prevents development of endothelial dysfunction in aortas and carotid arteries of ApoE-deficient mice, an experimental model of human hypercholesterolemia and atherosclerosis (d’Uscio and Katusic, unpublished observation). Whether this in vivo effect of vitamin C is related to its ability to protect tetrahydrobipterin is currently under investigation.

Very little information is available concerning tetrahydrobipterin levels in diseased blood vessels. In 1998, Cosentino et al. (8) did not detect any difference in tetrahydrobipterin levels between control aortas and aortas obtained from prehypertensive rats. Similarly, the tetrahydrobipterin level was normal in pre-eclamptic placentas (22). High fructose diet (model of insulin resistance) caused modest reduction (−10%) of the rat aortic tetrahydrobipterin (33, 34), suggesting that endothelial dysfunction in rats with insulin resistance could be due to alterations in tetrahydrobipterin metabolism. In contrast, hypercholesterolemia and atherosclerosis are associated with increased levels of tetrahydrobipterin in aortas of ApoE-deficient mice or rabbits fed a high cholesterol diet (unpublished observations). Elevated levels of neopterin (a byproduct of tetrahydrobipterin biosynthesis) were also detected in plasma of patients with atherosclerosis (36). This is consistent with the reported ability of proinflammatory cytokines to upregulate expression and enzymatic activity of GTP cyclohydrolase I (rate-limiting enzyme in biosynthesis of tetrahydrobipterin) in vascular endothelial cells (19, 31). Thus, despite the fact that there is very little evidence for the loss of tetrahydrobipterin from the diseased blood vessel wall, endothelial function was normalized by in vitro tetrahydrobipterin supplementation in experimental animals with insulin resistance and hypercholesterolemia (24, 33, 34, 38). The exact mechanisms responsible for the beneficial effects of tetrahydrobipterin is unclear but most likely involves increased enzymatic activity of eNOS and/or antioxidant activity of tetrahydrobipterin. Indeed, as mentioned earlier in this review, several groups (2, 14, 16) demonstrated that in cultured endothelial cells, increased availability of tetrahydrobipterin could account for stimulation of eNOS activity induced by vitamin C. Most importantly, oral supplementation for 8 wk with tetrahydrobipterin increased eNOS activity and reduced superoxide anion formation by eNOS in the aortas of insulin-resistant rats (34), providing strong evidence for the important role of tetrahydrobipterin in the pathogenesis of endothelial dysfunction.

Beneficial effects of tetrahydrobipterin supplementation on vascular endothelial function of experimental animals and humans have been reported by a number of laboratories (Table 1). However, it is interesting that despite the heterogeneity of animal models and patient populations studied, tetrahydrobipterin consistently improved endothelial function in all of the reported studies. The explanation for the beneficial effect of tetrahydrobipterin could be due to the fact that oxidative stress is the most likely common mechanism underlying endothelial dysfunction in conditions like hypercholesterolemia, diabetes, and smoking. If tetrahydrobipterin is a common molecular target for oxidative stress, then it is conceivable that supplemen-
activity for eNOS. Tetrahydrobiopterin stimulates the
in mind that tetrahydrobiopterin does not have selec-
tivity for eNOS. Tetrahydrobiopterin stimulates the
enzymatic activity of nNOS and iNOS isoforms. This,
in turn, may lead to excessive nitric oxide production
to a relative deficiency of tetrahydrobiop-
tination with tetrahydrobiopterin can improve endothelial
function. However, further studies are needed to rec-
tion with tetrahydrobiopterin vascular biology and pathology are
needed.

IMPLICATIONS FOR THERAPEUTIC APPLICATION

During the past six years, numerous studies in ani-
mals demonstrated feasibility and potential utility of
NOS gene transfer in the treatment of cardiovascular
diseases (4). It is interesting that in intact arteries the
beneficial effect of recombinant eNOS (or nNOS) was
demonstrated without supplementation with tetrahy-
drobiopterin, suggesting that both in normal and dis-
eased blood vessels, availability of tetrahydrobiopterin is
not a limiting factor in the biosynthesis of nitric
oxide. However, in most of these studies expression
and function of recombinant eNOS and nNOS were
studied during relatively short periods of time (up to 1
wk). Whether long-term elevation of eNOS (or nNOS)
expression may require adjustments in tetrahydro-
biopterin metabolism is unknown. Further studies are
needed to determine whether in diseased blood vessels
reduced availability of tetrahydrobiopterin may not
only limit nitric oxide production, but create conditions
for expression of “uncoupled eNOS”, leading to exces-
sive production of superoxide anions, peroxynitrite,
and oxidative injury.

Importance of optimal intracellular concentration of
tetrahydrobiopterin for expression and function of re-
combinant iNOS has been reported. Supplementation
with tetrahydrobiopterin increased nitric oxide produc-
tion in cultured rat aortic smooth muscle cells trans-
duced with iNOS (10). Interestingly, expression of re-
combinant iNOS in cerebral arteries is associated with
a significant increase in superoxide anion production
(Eguchi and Katusic, unpublished observations). Al-
though the source and the mechanism of superoxide
anions generation is unclear, it could be due to the
“uncoupling” of iNOS. In endothelial and smooth mus-
cular cells, induction of endogenous iNOS is associated
with upregulation of GTP cyclohydrolase I, a rate-
limiting enzyme in the biosynthesis of tetrahydrobiop-
terin. In contrast, expression of recombinant iNOS in
normal arteries is not coupled with increased expres-
sion and catalytic activity of GTP cyclohydrolase I.
This can lead to a relative deficiency of tetrahydrobiop-
terin and “uncoupling” of iNOS. Thus supplementation
with tetrahydrobiopterin may be required to avoid for-
mation of superoxide anions and peroxynitrite by
iNOS. Adverse effects of iNOS (as well as eNOS and
nNOS) “uncoupling” in a gene therapy setting have not

Table 1. Beneficial effect of tetrahydrobiopterin
supplementation on endothelial dysfunction

<table>
<thead>
<tr>
<th>Disease</th>
<th>Species</th>
<th>Vascular Bed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Coronary artery</td>
<td>25</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Coronary arterioles</td>
<td>38</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Saphenous vein</td>
<td>44</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Pig</td>
<td>Coronary arterioles</td>
<td>38</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Rat</td>
<td>Aorta</td>
<td>8</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>Human</td>
<td>Forearm</td>
<td>35</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Rat</td>
<td>Aorta</td>
<td>18</td>
</tr>
<tr>
<td>Ischemia</td>
<td>Pig</td>
<td>Coronary artery</td>
<td>39</td>
</tr>
<tr>
<td>Ischemia-reperfusion</td>
<td>Pig</td>
<td>Lung</td>
<td>32</td>
</tr>
<tr>
<td>Smoking</td>
<td>Human</td>
<td>Saphenous vein</td>
<td>15</td>
</tr>
<tr>
<td>Smoking</td>
<td>Human</td>
<td>Brachial artery</td>
<td>42</td>
</tr>
</tbody>
</table>

Diseases (4). It is interesting that in intact arteries the
beneficial effect of recombinant eNOS (or nNOS) was
demonstrated without supplementation with tetrahy-
drobiopterin, suggesting that both in normal and dis-
eased blood vessels, availability of tetrahydrobiopterin is
not a limiting factor in the biosynthesis of nitric
oxide. However, in most of these studies expression
and function of recombinant eNOS and nNOS were
studied during relatively short periods of time (up to 1
wk). Whether long-term elevation of eNOS (or nNOS)
expression may require adjustments in tetrahydro-
biopterin metabolism is unknown. Further studies are
needed to determine whether in diseased blood vessels
reduced availability of tetrahydrobiopterin may not
only limit nitric oxide production, but create conditions
for expression of “uncoupled eNOS”, leading to exces-
sive production of superoxide anions, peroxynitrite,
and oxidative injury.

Importance of optimal intracellular concentration of
tetrahydrobiopterin for expression and function of re-
combinant iNOS has been reported. Supplementation
with tetrahydrobiopterin increased nitric oxide produc-
tion in cultured rat aortic smooth muscle cells trans-
duced with iNOS (10). Interestingly, expression of re-
combinant iNOS in cerebral arteries is associated with
a significant increase in superoxide anion production
(Eguchi and Katusic, unpublished observations). Al-
though the source and the mechanism of superoxide
anions generation is unclear, it could be due to the
“uncoupling” of iNOS. In endothelial and smooth mus-
cular cells, induction of endogenous iNOS is associated
with upregulation of GTP cyclohydrolase I, a rate-
limiting enzyme in the biosynthesis of tetrahydrobiop-
terin. In contrast, expression of recombinant iNOS in
normal arteries is not coupled with increased expres-
sion and catalytic activity of GTP cyclohydrolase I.
This can lead to a relative deficiency of tetrahydrobiop-
terin and “uncoupling” of iNOS. Thus supplementation
with tetrahydrobiopterin may be required to avoid for-
mation of superoxide anions and peroxynitrite by
iNOS. Adverse effects of iNOS (as well as eNOS and
nNOS) “uncoupling” in a gene therapy setting have not

Table 1. Beneficial effect of tetrahydrobiopterin
supplementation on endothelial dysfunction

<table>
<thead>
<tr>
<th>Disease</th>
<th>Species</th>
<th>Vascular Bed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Coronary artery</td>
<td>25</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Coronary arterioles</td>
<td>38</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Saphenous vein</td>
<td>44</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Pig</td>
<td>Coronary arterioles</td>
<td>38</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Rat</td>
<td>Aorta</td>
<td>8</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>Human</td>
<td>Forearm</td>
<td>35</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Rat</td>
<td>Aorta</td>
<td>18</td>
</tr>
<tr>
<td>Ischemia</td>
<td>Pig</td>
<td>Coronary artery</td>
<td>39</td>
</tr>
<tr>
<td>Ischemia-reperfusion</td>
<td>Pig</td>
<td>Lung</td>
<td>32</td>
</tr>
<tr>
<td>Smoking</td>
<td>Human</td>
<td>Saphenous vein</td>
<td>15</td>
</tr>
<tr>
<td>Smoking</td>
<td>Human</td>
<td>Brachial artery</td>
<td>42</td>
</tr>
</tbody>
</table>

Diseases (4). It is interesting that in intact arteries the
beneficial effect of recombinant eNOS (or nNOS) was
demonstrated without supplementation with tetrahy-
drobiopterin, suggesting that both in normal and dis-
eased blood vessels, availability of tetrahydrobiopterin is
not a limiting factor in the biosynthesis of nitric
oxide. However, in most of these studies expression
and function of recombinant eNOS and nNOS were
studied during relatively short periods of time (up to 1
wk). Whether long-term elevation of eNOS (or nNOS)
expression may require adjustments in tetrahydro-
biopterin metabolism is unknown. Further studies are
needed to determine whether in diseased blood vessels
reduced availability of tetrahydrobiopterin may not
only limit nitric oxide production, but create conditions
for expression of “uncoupled eNOS”, leading to exces-
sive production of superoxide anions, peroxynitrite,
and oxidative injury.

Importance of optimal intracellular concentration of
tetrahydrobiopterin for expression and function of re-
combinant iNOS has been reported. Supplementation
with tetrahydrobiopterin increased nitric oxide produc-
tion in cultured rat aortic smooth muscle cells trans-
duced with iNOS (10). Interestingly, expression of re-
combinant iNOS in cerebral arteries is associated with
a significant increase in superoxide anion production
(Eguchi and Katusic, unpublished observations). Al-
though the source and the mechanism of superoxide
anions generation is unclear, it could be due to the
“uncoupling” of iNOS. In endothelial and smooth mus-
cular cells, induction of endogenous iNOS is associated
with upregulation of GTP cyclohydrolase I, a rate-
limiting enzyme in the biosynthesis of tetrahydrobiop-
terin. In contrast, expression of recombinant iNOS in
normal arteries is not coupled with increased expres-
sion and catalytic activity of GTP cyclohydrolase I.
This can lead to a relative deficiency of tetrahydrobiop-
terin and “uncoupling” of iNOS. Thus supplementation
with tetrahydrobiopterin may be required to avoid for-
mation of superoxide anions and peroxynitrite by
iNOS. Adverse effects of iNOS (as well as eNOS and
nNOS) “uncoupling” in a gene therapy setting have not

Table 1. Beneficial effect of tetrahydrobiopterin
supplementation on endothelial dysfunction

<table>
<thead>
<tr>
<th>Disease</th>
<th>Species</th>
<th>Vascular Bed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Coronary artery</td>
<td>25</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Coronary arterioles</td>
<td>38</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Human</td>
<td>Saphenous vein</td>
<td>44</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Pig</td>
<td>Coronary arterioles</td>
<td>38</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Rat</td>
<td>Aorta</td>
<td>8</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>Human</td>
<td>Forearm</td>
<td>35</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Rat</td>
<td>Aorta</td>
<td>18</td>
</tr>
<tr>
<td>Ischemia</td>
<td>Pig</td>
<td>Coronary artery</td>
<td>39</td>
</tr>
<tr>
<td>Ischemia-reperfusion</td>
<td>Pig</td>
<td>Lung</td>
<td>32</td>
</tr>
<tr>
<td>Smoking</td>
<td>Human</td>
<td>Saphenous vein</td>
<td>15</td>
</tr>
<tr>
<td>Smoking</td>
<td>Human</td>
<td>Brachial artery</td>
<td>42</td>
</tr>
</tbody>
</table>
been reported but certainly represent a potential source of vascular injury.

FUTURE DIRECTIONS

The function of tetrahydrobiopterin in NOS catalysis is still enigmatic. Further biochemical studies in this area are certainly warranted. With regard to vascular biology, very little is known about tetrahydrobiopterin metabolism in normal blood vessels. It will be of particular importance to improve the understanding of tetrahydrobiopterin metabolism in diseased arteries and veins. This may expand the knowledge needed for further refinement of therapeutic strategies directed toward prevention and treatment of endothelial dysfunction. In vitro findings demonstrating the ability of vitamin C to stimulate eNOS activity in cultured endothelial cells via chemical stabilization of tetrahydrobiopterin are the best illustration of the most recent progress in understanding the molecular mechanism underlying the protective effect of an important antioxidant. Genetic manipulation of GTP cyclohydrolase I (creation of knockout or transgenic mice) would have a major impact and would provide opportunities for cross-breeding with mice suffering from atherosclerosis, diabetes, or hypertension. These studies would certainly help to more precisely characterize the role of tetrahydrobiopterin in the pathogenesis of endothelial dysfunction. Availability of new-generation gene therapy vectors should improve long-term expression of recombinant NOS in arteries and veins. Experience obtained with these vectors will help to determine whether bioavailability of tetrahydrobiopterin may limit the ability of recombinant NOS(s) to restore nitric oxide production in dysfunctional endothelium.

Critical comments of Dr. Livius d’Uscio were most appreciated. The editorial assistance of Janet Beckman is gratefully acknowledged.

Z. S. Katusic has been supported by National Heart, Lung, and Blood Institute Grant HL-53524, National Institute for Neurological Disorders and Stroke Grant NS-37491, the American Heart Association Grant HL-53524, the American Heart Association Grant HL-53524, National Institute for Neurological Diseases and Stroke Grant NS-37491, the American Heart Association Bugher Foundation Award for the Investigation of Stroke, and Mayo Foundation.

REFERENCES

