Action potential duration restitution and ventricular fibrillation due to rapid focal excitation

MOSHE SWISSA, ZHILIN QU, TOSHIHIKO OHARA, MOON-HYOUNG LEE, SHIEN-FONG LIN, ALAN GARFINKEL, HRAYR S. KARAGUEUZIAN, JAMES N. WEISS, AND PENG-SHENG CHEN

Action potential duration restitution and ventricular fibrillation due to rapid focal excitation. Am J Physiol Heart Circ Physiol 282: H1915–H1923, 2002. First published January 24, 2002; 10.1152/ajpheart.00867.2001.—The focal source hypothesis of ventricular fibrillation (VF) posits that rapid activation from a focal source, rather than action potential duration (APD) restitution properties, is responsible for the maintenance of VF. We injected aconitine (100 μg) into normal isolated perfused swine right ventricles (RVs) stained with 4-[2-(di-n-butylamino)-6-naphthyl]vinylpyridinium (di-4-ANEPPS) for optical mapping studies. Within 97 ± 163 s, aconitine induced ventricular tachycardia (VT) with a mean cycle length 268 ± 37 ms, which accelerated before converting to VF. Drugs that flatten the APD restitution slope, including diacetyl monoxime (10–20 mM, n = 6), bretylium (10–20 μg/ml, n = 3), and verapamil (2–4 μg/ml, n = 3), reversibly converted VF to VT in all cases. In two RVs, VF persisted despite of the excision of the aconitine site. Simulations in two-dimensional cardiac tissue showed that once VF was initiated, it remained sustained even after the “aconitine” site was eliminated. In this model of focal source VF, the VT-to-VF transition occurred due to a wave break outside the aconitine site, and drugs that flattened the APD restitution slope converted VF to VT despite continuous activation from aconitine site.

Arrhythmia; mapping; pacing; tachyarrhythmias

The mechanism of ventricular fibrillation (VF) is unclear. The multiple wavelet hypothesis (13) posits that dispersion of refractoriness underlies the mechanisms of wave breaks, resulting in the maintenance of VF. The dispersion of refractoriness could be caused either by preexisting electrophysiological or anatomic heterogeneity, or dynamically by steep action potential (AP) duration (APD) restitution (3, 5, 15, 18, 19, 22). Flattening of the APD restitution curve with verapamil, diacetyl monoxime (DAM) (19), and bretylium (3) has been shown to convert VF to a periodic rhythm, or ventricular tachycardia (VT), in canine and porcine ventricles. An alternative hypothesis of cardiac fibrillation is the focal source hypothesis. A rapidly firing focal source induced by aconitine (16) or a mother rotor (4) could drive the entire atria or ventricle into fibrillation. The period of the mother rotor determines the dominant frequency (DF) of cardiac fibrillation. Samie et al. (20) tested the mother rotor hypothesis in rabbit ventricles. They also found that verapamil converted VF to VT, but attributed this to the effect of verapamil on the core size and the period of mother rotor rather than APD restitution. However, because verapamil also flattens APD restitution (19), it is not possible to completely rule out that the antifibrillatory action of verapamil is due to its effects on APD restitution. To resolve this issue, it is necessary to develop an animal model in which VF is caused by rapid focal discharge from a fixed and known location. If drugs that flatten APD restitution convert VF to VT independent of the period of the focal source in this model, then the importance of restitution can be ascertained. For electrical stimulation to achieve 1:1 capture at a period of a rotor (>10 Hz) (20), it usually requires a strong stimulus strength that might exceed 10 mA (1, 6). Because it is unlikely for a mother rotor to generate a 10-mA current, we propose that rapid pacing is not an appropriate model to test the focal source hypothesis of VF. Aconitine, a sodium channel opener that is known to cause focal atrial fibrillation (16), may result in rapid focal discharge from the myocardium at rate approaching 10 Hz. Therefore, we first examined whether direct aconitine injection into the swine right ventricle (RV) would mimic focal source VF. We then studied the effects of verapamil, DAM, and bretylium, which, although they have divergent effects on rotor period and VF cycle length (CL), all flatten the APD restitution.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 1 October 2001; accepted in final form 21 January 2002

METHODS

Tissue preparation. The animal research protocol was approved by the Institutional Animal Care and Use Committee and conformed to the guidelines of the American Heart Association. Eleven farm pigs (25–35 kg wt) of either sex were anesthetized with pentobarbital sodium (20 mg/kg iv). The RVs were isolated and perfused through the right coronary artery with oxygenated Tyrode’s solution at 37°C (7). The composition of Tyrode’s solution (in mmol/L) was as follows: 125 NaCl, 4.5 KCl, 1.8 NaH₂PO₄, 24 NaHCO₃, 2.7 CaCl₂, 0.5 MgCl₂, and 5.5 dextrose (8). The RVs were placed with the endocardial side down in a tissue bath. VF, which always occurred during heart excision, continued in isolated RVs. After baseline recordings, the tissue was defibrillated and paced at fixed CL of 400 ms with twice the diastolic threshold current and 5-ms pulse width through a bipolar electrode on the epicardial surface.

Pseudo-electrocardiograms (ECG) were recorded via two electrodes on opposing sides of the RV (7). Bipolar electrode pairs were placed at the aconitine injection site and at a site distant from that area.

Optical mapping. The methods of optical mapping was similar to that published previously (10, 21). The isolated RVs were stained for 20 min with the voltage-sensitive dye 4-[β-[2-(di-n-butylamino)-6-naphthyl][vinyl]pyridinium (di-4-ANEPPS) (Molecular Probes) in the perfusate and excited with a laser at 532 nm. Light was collected using an image-intensified charge-coupled device camera (Dalsa). The data were gathered at a 2.3-ms sampling interval, acquiring from 128 x 128 sites simultaneously over a 3 x 3-cm² area. The duration of each recording was 2.3 s. Data for each pixel were represented on a gray scale, with white representing fully depolarized and black representing fully repolarized states, respectively. Depolarization wave fronts are shown by red lines and repolarization wave backs are shown by blue lines, with their junctions representing wave breaks.

We also manually determined the APD restitution curves by using optical signals recorded during VT, VT-to-VF transition, and VF. On each tracing, a horizontal line was drawn at one-sixth of the maximum AP amplitude from the baseline. The intersection between this line and the upslope of the AP is the time of depolarization, and the intersection between this line and the downslope of the AP is the time of repolarization. The APD and depolarization interval (DI) were defined as the time interval between depolarization and repolarization and between repolarization and depolarization, respectively. The relationship between the APD and the preceding DI was plotted and the APD restitution slopes were calculated by single-exponential fits to the data.

Study protocol. Aconitine (100 µg) was injected locally at the center of the RV, inducing VT and VF. After data acquisition, 10–20 mM DAM (n = 6) (19) was infused to convert VF back to VT and then washed out to convert VT back to VF. In these more RVs, we first infused and then washed out bretylium (10–20 µg/ml) (n = 3) (3), followed by 2–4 µg/ml verapamil (20) infusion and washout. In one of these three RVs, bretylium was reinfused a second time, followed by reinjection of aconitine and infusion of verapamil with bretylium still present. In two additional RVs, we excised the aconitine site to determine whether VF persisted. Other than DAM and verapamil, we did not use electromechanical uncouplers in the study.

DF analysis. Fast Fourier transform (FFT) was applied to the optical signals at each pixel (1,000 data points for 2.3-s recording) and to the pseudo-ECG and bipolar recordings near and far from aconitine site (50,000 data points for 10-s recording). The frequency corresponding to the largest spectral peak was defined as the DF. The value of DF of each pixel was used to generate an iso-DF map.

Statistical analyses. Student’s t-tests were used for statistical comparison. P ≤ 0.05 was considered significant. Analysis of variance with Dunn’s (Bonferroni) correction was used to compare the means of three groups. All data are presented as means ± SD.

Computer simulation. Numerical simulations were carried out using the following cable equation (17)

\[
\frac{dV}{dt} = -I_{ion} + \frac{1}{\rho_s} \frac{\partial V}{\partial x} + \frac{1}{\rho_s} \frac{\partial V}{\partial y} \tag{1}
\]

where the membrane capacitance \(C_m = 1 \mu F/cm^2\), the surface-to-volume ratio \(S_e = 2,000 \ cm^{-1}\), the transverse and longitudinal resistivities \(\rho_e = 0.5 \ k\Omega\cdotcm\), V is voltage, and t is time. We simulated a 10 x 10-cm tissue with “no-flux” boundary conditions. In Eq. 1, the ionic current \(I_{ion}\) was taken from the Luo-Rudy AP model (12), modified to change AP restitution properties, as specified in the figure legends. We introduced heterogeneity into the tissue by two methods. In the first, we changed the maximum potassium channel conductance (\(G_K\)) through space as follows

\[
G_K(x,y) = \begin{cases} \alpha \cdot G_{K_0} & \text{if } x < 5 \text{ cm} \\ (\alpha - \beta(x-5)) \cdot G_{K_0} & \text{if } 5 \text{ cm} < x < 6 \text{ cm} \\ (\alpha - \beta) \cdot G_{K_0} & \text{if } x > 6 \text{ cm} \end{cases} \tag{2}
\]

where \(G_{K_0} = 0.282 \ mS/cm^2\) and \(\alpha\) and \(\beta\) are constants that control the inhomogeneity. In the second, we changed the maximum potassium channel conductance as follows

\[
G_K(x,y) = \begin{cases} \alpha + \beta(r-1) \cdot G_{K_0} & \text{if } r < 1 \text{ cm} \\ \alpha \cdot G_{K_0} & \text{otherwise} \end{cases} \tag{3}
\]

where \(r\) is the distance from the aconitine site. We mimicked aconitine-induced automaticity by pacing the tissue at a small area whenever the diastolic interval exceeded a critical (adjustable) value. A pseudo-ECG was constructed by summing membrane voltage, as described previously (23).

RESULTS

Induction of VT and VF by aconitine. In all RV tissues, local injection of aconitine (100 µg) induced VT within 97 ± 162 s. The initial CL was 268 ± 37 ms, which progressively decreased to 156 ± 40 ms before deteriorating to VF. Time from VT induction to VF averaged 377 ± 657 s. Figure 1 shows a typical example. Twenty-five seconds after aconitine injection, the first beat of VT occurred, and pacing was turned off. Figure 1B shows a 3-s recording at the onset of VT. The first four beats were paced at a CL of 400 ms and the fifth beat (arrow) occurred before the pacing stimulus. This fifth beat was therefore the first beat of VT with an initial CL of 300 ms. At time 50 s (Fig. 1C), the VT CL decreased to 150 ms. At time 76 s (Fig. 1D), the pseudo-ECG recording and the bipolar recording distant from the aconitine site showed VF. However, the aconitine site was still activated at a regular CL of 125 ms. At time 86 s (Fig. 1E), the aconitine injection site also demonstrated VF. Optical mapping during aconitine-induced VT (Fig. 2A) revealed focal activation originating from the aconitine injection site (yellow arrowhead) at 244-ms CL. The wave front first spread...
along the fiber orientation and then to the rest of the tissue, giving rise to the periodic optical potential recordings.

In two episodes, we successfully mapped the transition of VT to VF. Figure 2 shows a 2.3-s recording containing the VT-to-VF transition. The transition occurred when wave breaks were created (Fig. 2A, 442-ms panel). Once established, VF was characterized by clockwise and counterclockwise rotating spiral waves, multiple wave breaks, and multiple irregular...
wave fronts. In Fig. 2B, FFT analysis of optical signals at the aconitine site over the full 2.3-s segment revealed two peaks with frequencies of 9.6 and 11.9 Hz. When the FFT analysis was applied to the VT segment alone, only the 9.6-Hz frequency was observed, whereas for the VF segment, only the 11.9-Hz frequency was present. This finding indicates that the frequency changed abruptly at the aconitine site when VF occurred. This was not due to a sudden increase in the automaticity of the entire RV as the aconitine-induced automaticity accelerated gradually, but abruptly. In addition, the distribution of the DF in the FFT spectra for the whole 2.3-s episode (Fig. 2C) illustrates that the low and high frequency components of the DF were at different times. For the VT segment, only the 11.9-Hz frequency was present. This indicates that the aconitine-induced automaticity accelerated gradually, whereas for the VF segment, only the 9.6-Hz frequency was observed, indicating that the maximum DF during VF might not be close to the ablated site (Fig. 2D).

Restitution during VT, VT-to-VF transition, and VF. An example of optical recording of aconitine-induced VT during VT-to-VF transition and during VF are given in Fig. 3A. The APD restitution curves of these three different phases are shown in Fig. 3B. The maximal slopes of the APD restitution curves were 0.226, 3.3, and 1.76 for VT, VT-to-VF transition, and VF, respectively.

Conversion of VF to VT by flattening restitution. DAM (6 of 6), bretylium (3 of 3), and verapamil (3 of 3) all converted aconitine-induced VF to VT (Fig. 4). The VT rate after conversion was 9.7, 7.3, and 14.1 Hz, respectively ($P < 0.01$). The time intervals between drug infusion and conversion of VF to VT were 12.3 ± 5.1, 13 ± 5.2, and 24.3 ± 4.0 min, respectively. Verapamil conversion time was significantly longer compared with DAM and bretylium ($P < 0.05$).

All drug effects were reversible on washout, with VT converting back to VF within 8.5 ± 3.0, 6.3 ± 0.3, and 11.7 ± 1.5 min for DAM, bretylium, and verapamil, respectively ($P = n.s.$). Figure 4 also shows typical examples. In these examples, DF did not change significantly with DAM or bretylium (Table 1). In contrast, DF increased significantly with verapamil ($P < 0.01$).

Table 1 summarizes DF at different stages of the experiments. When the baseline aconitine-induced VF of all nine RVs was pooled, the DF at the aconitine injection site was significantly higher than the DF registered by the pseudo-ECG (10.1 ± 1.6 vs. 8.1 ± 1.6 Hz, respectively, $P < 0.05$). In all RVs, the maximal DF of the entire RV was located at the aconitine site. These results suggest that the aconitine site is a fixed and known origin for rapid focal activation during VF.

Thus, despite their very different electrophysiological profiles, all three APD restitution-flattening drugs converted VF to VT, with no clear relationship between their effects on DF and their ability to convert VF.

Fibrillatory conduction block and maintenance of aconitine-induced VF. We then examined whether VF could be maintained by passive fibrillatory conduction block driven by the aconitine site as the only mechanism of new wave break. In one RV, we gave bretylium to convert VF to VT and then reinjected the aconitine site with fresh aconitine (Fig. 5). With conversion to VT by bretylium, DF decreased to 6.6 Hz. Rejection of aconitine then increased DF at the aconitine site to 15.8 Hz, causing 2:1 conduction block (7.9 Hz) at distance sites. The pseudo-ECG and optical traces continued to show VT under these conditions, and electrocardiographic VF never occurred. The addition of verapamil to shorten refractoriness (while retaining flat APD restitution) allowed the resumption of 1:1 conduction at the high frequency (14.6 Hz) of the aconitine site, with the electrogram still showing VT but at a faster rate. Thus, with flat APD restitution, the rapid focal discharge (VT) did not undergo fibrillatory conduction and no VF was induced.

In two RVs, we excised the aconitine site after VT-to-VF transition had occurred. DF on the pseudo-ECG before and after excision were the same, and VF persisted for >15 min. These findings are similar to those...
found in aconitine-induced atrial fibrillation. Once induced, the atrial fibrillation is also independent of the aconitine focus (14).

Computer simulations. To gain further insight into the role of APD restitution in focal source VF, we performed computer simulations using a modified version of the Luo-Rudy phase 1 ventricular AP model in simulated two-dimensional cardiac tissue incorporating a physiological degree of APD dispersion (see METHODS). We stimulated the effects of aconitine by pacing a small region (the “aconitine focus”) in the center of the tissue (site 2 of Fig. 6A) whenever the diastolic interval exceeded a critical (adjustable) duration. Under control conditions, in which the APD restitution slope was steep enough (>1) to produce spontaneous spiral wave breakup, increasing the frequency of the aconitine focus 9 Hz led to a distant wave break, which initiated “VF” (Fig. 6D). At this point, a second higher-frequency component at 10.8 Hz appeared due to penetration of the aconitine focus by outside reentrant wave fronts (Fig. 6B), reproducing the experimental observations in Fig. 2B. As in Fig. 2B, the FFT spectra for the transition from VT to VF shows two peaks, at 9.1 and 10.4 Hz. The first is attributable exclusively to the VT

![Fig. 4. DF analysis of the ECG recordings obtained during various phases of the study.](http://ajpheart.physiology.org)

Table 1. Dominant frequency analysis

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Aconitine-Induced VF, Hz</th>
<th>6 Min of Drug Perfusion, Hz</th>
<th>VF-to-VT Conversion, Hz</th>
<th>VF After Washout, Hz</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM</td>
<td>6</td>
<td>8.1 ± 1.6</td>
<td>9.4 ± 1.4</td>
<td>9.7 ± 1.2</td>
<td>10.9 ± 0.4 Hz</td>
<td>NS</td>
</tr>
<tr>
<td>Pseudo-ECG</td>
<td>6</td>
<td>10.1 ± 1.8</td>
<td>10.3 ± 1.4</td>
<td>9.7 ± 1.2</td>
<td>11.1 ± 0.4 Hz</td>
<td>NS</td>
</tr>
<tr>
<td>Bretylium</td>
<td>3</td>
<td>7.5 ± 2.2</td>
<td>7.6 ± 0.4</td>
<td>7.3 ± 0.2</td>
<td>8.3 ± 0.9</td>
<td>NS</td>
</tr>
<tr>
<td>Aconitine site</td>
<td>3</td>
<td>8.8 ± 1.6</td>
<td>7.6 ± 0.4</td>
<td>7.3 ± 0.2</td>
<td>8.2 ± 0.9</td>
<td>NS</td>
</tr>
<tr>
<td>Verapamil</td>
<td>3</td>
<td>8.2 ± 0.9</td>
<td>15.4 ± 1.0</td>
<td>15.3 ± 0.8</td>
<td>14.4 ± 0.5</td>
<td><0.01*</td>
</tr>
<tr>
<td>Pseudo-ECG</td>
<td>3</td>
<td>8.2 ± 0.9</td>
<td>14.8 ± 0.7</td>
<td>14.0 ± 1.2</td>
<td>14.4 ± 0.6</td>
<td><0.01*</td>
</tr>
<tr>
<td>Aconitine site</td>
<td>3</td>
<td>8.2 ± 0.9</td>
<td>15.4 ± 1.0</td>
<td>15.3 ± 0.8</td>
<td>14.4 ± 0.5</td>
<td><0.01*</td>
</tr>
</tbody>
</table>

Values are means ± SD; n, no. of pigs. VF, ventricular fibrillation; DAM, diacetyl monoxime; ECG, electrocardiogram; NS, not significant; VT, ventricular tachycardia. *Comparing 1 with 2, 3, and 4.

AJP-Heart Circ Physiol • VOL 282 • MAY 2002 • www.ajpheart.org
phase immediately before VF, and the second is exclusively to the VF phase, as shown by the individual FFT spectra for the two phases. Figure 6 shows that the FFT spectra were qualitatively very similar to the FFT spectra for real data (Fig. 4). VF was self-sustaining and not dependent on the aconitine focus under these conditions because VF continued indefinitely when the focus was turned off.

If APD restitution slope in the Luo-Rudy phase 1 model was flattened to <1, increasing the frequency of

Table: FFT Spectra Analysis

<table>
<thead>
<tr>
<th>Frequency Analysis</th>
<th>PECG</th>
<th>Aco.</th>
<th>PECG</th>
<th>Aco.</th>
<th>PECG</th>
<th>Aco.</th>
<th>PECG</th>
<th>Aco.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECG</td>
<td>6.6 Hz</td>
<td>6.6 Hz</td>
<td>7.9 Hz</td>
<td>15.8 Hz</td>
<td>14.6 Hz</td>
<td>14.6 Hz</td>
<td>7.5 Hz</td>
<td>15.0 Hz</td>
</tr>
<tr>
<td>Aco.</td>
<td>6.6 Hz</td>
<td>6.6 Hz</td>
<td>7.9 Hz</td>
<td>15.8 Hz</td>
<td>14.6 Hz</td>
<td>14.6 Hz</td>
<td>7.5 Hz</td>
<td>15.0 Hz</td>
</tr>
</tbody>
</table>

Fig. 6. Simulation of focal source VF associated with steep APD restitution [with maximum calcium channel conductance (G_{ca}) = 0.045 mS/cm2 in the Luo-Rudy model, and $\alpha = 1.7$ and $\beta = 0.7$ in Eq. 2]. **A**, top: locations of recording (1–3) and pacing sites (2) used to mimic the effects of aconitine (see METHODS). **Bottom**, APD distribution along the x-axis during pacing at 1,000 ms. **B**, top: intracellular membrane potential at site 2 (“aconitine focus”) during the transition from VT to VF (at arrow). **Middle**, FFT spectra for the final 2.5 s of VT (left) and the first 2.5 s of VF (right), illustrating the sudden increase in DF peak. **Bottom**, FFT spectrum for the full 5 s, showing two dominant peaks. **C**: FFT spectra from recording sites 1–3 during a 20-s simulation after the onset of VF, showing broadband FFT spectra similar to those from the real heart (Fig. 4). **D**: two photos at time 15 s and time 15.5 s after the onset of VF, showing multiple wavelets. Voltage decreases from red (upstroke) to green (plateau) to blue (repolarized). **E**: PECG after VT-to-VF conversion.
the aconitine focus still led to wave break due to the APD heterogeneity in the tissue (Fig. 7, A–F). The broken waves then formed relatively stationary spiral waves in different domains of the tissue, with relatively narrow peaks in the FFT spectra corresponding to the intrinsic frequencies of these spiral waves. This divided the tissue into spatially discrete, relatively stationary domains each characterized by its own DF, similar to the experimental findings by Samie et al. (20). The pseudo-ECG continued to show VF (Fig. 7B, bottom trace), unlike the experimental results with APD restitution-flattening drugs, which converted VF to VT. However, as in the steep APD restitution case, once wave break occurred, maintenance of VF was not dependent on continued excitation from the aconitine focus, because it continued when the focus was turned off. Thus conduction block arising from rapid firing of the aconitine focus was essential for VF initiation, but its maintenance depended on the intrinsic spiral wave dynamics and not excitations from the focal source.

Fig. 7. Focal source VF and VT with shallow APD restitution (with $G_{\text{a}} = 0.07 \text{ mS/cm}^2$, with sped-up kinetics, i.e., $\tau_d \rightarrow 0.1 \tau_d$, $\tau_f \rightarrow 0.1 \tau_f$). A: with the critical DI (DL) = 35 ms to simulate a relatively slow focus analogous to the postbretlyium condition in Fig. 5A, FFT spectra from recording sites 1–3 all showed a unique frequency of 10.5 Hz, and two photos at 9.5 and 10 s show that no wave break occurred. B: on shortening DL to 10 ms to increase pacing rate (simulating aconitine reinjection in Fig. 5B), wave break occurred, leading to spiral wave reentry (right). FFT spectra at sites 1–3 remained narrow, with each site showing different DFs (16.4, 15.4, and 13.8 Hz, respectively). C: With DL = 15 ms, G_{a} was reduced to 0.04 mS/cm2 to mimic the APD shortening effect of verapamil in Fig. 5C. No wave break occurred (right) and FFT spectra again showed a narrow spike at 16.7 Hz. With the use of the heterogeneity described in Eq. 3 to ensure that the “aconitine focus” remains faster than intrinsic spiral wave frequency, the results of Fig. 5, A–C, have been replicated. D: 1:1 conduction with DL = 50 ms, simulating bretlyium. E: 2:1 conduction with DL = 10 ms, simulating reinjection of aconitine. F: 1:1 conduction restored by reducing G_{a} to 0.04 mS/cm2 to simulate verapamil.
DISCUSSION

There are three major findings: 1) aconitine-induced rapid focal discharges and sustained VT; 2) at baseline, spontaneous VT-to-VF transitions occurred due to the creation of new wave breaks; and 3) drugs that flattened APD restitution converted VF back to VT, despite continuous rapid activation from aconitine site.

Computer simulation studies. Computer simulations provided further insights into the mechanisms of VF. When electrocardiographic VF was present, VF was maintained by the intrinsic dynamics of the spiral waves in the tissue rather than by the aconitine focus with fibrillatory conduction block in the surrounding tissue. Under these conditions, APD restitution steepness determined whether spatially discrete domains with a characteristic dominant frequency were stationary in time. When the intrinsic frequencies of spiral waves in the tissue were lower than the frequency of the aconitine focus, VF invariably converted to VT, whether conduction block was present or not. These findings indicate that APD restitution characteristics play a major role in determining the “phenotype” of VF.

Aconitine-induced VT-to-VF ratio. A key finding is that with the onset of VF, DF at the aconitine site suddenly jumped to a higher value, indicating that the aconitine injection site was being penetrated repeatedly by outside wave fronts. Thus, when conduction block at distant sites produced VF, wave breaks generated at these sites created rotors with higher frequencies than the aconitine focus. Once VF was initiated, the aconitine focus was no longer required for its maintenance.

Mechanisms of VF-to-VT transition. If the focal source hypothesis of VF is correct, two mechanisms by which a drug might be predicted to convert VT to VF by eliminating fibrillatory conduction block are 1) by decreasing the frequency of the focal source to allow 1:1 capture or 2) by decreasing the refractory period of the tissue to allow 1:1 capture at the same focal source frequency. Samie et al. (20) proposed that verapamil converted VF to VT by both mechanisms. However, Chorro et al. (2) found that DF did not correlate with activation patterns in VF. Rather, verapamil increased DF, whereas flecainide and sotalol diminished DF. Despite the divergent effects, all three drugs reduced the complexity of activation patterns in VF. Riccio et al. (19) showed that verapamil initially increased DF but increased VF organization in isolated canine ventricles. It eventually converted VF to VT without significantly altering DF over that during control VF. These results are inconsistent with the DF hypothesis (20).

An alternative mechanism to explain VF to VT transition by antiarrhythmic drugs is through flattening APD restitution (3, 19). DAM, verapamil, and bretylium all converted aconitine-induced focal source VF to VT, and all three drugs flatten APD restitution. In addition, DAM and verapamil decrease APD during both pacing and VF (11). Because decreased APD can facilitate 1:1 conduction and might therefore convert focal source VF to VT by eliminating fibrillatory conduction block, we also tested bretylium, which significantly increases APD (3). It also converted VF to VT. To rule out that the effects of bretylium were primarily mediated by slowing the aconitine focus, thereby eliminating fibrillatory conduction block, we reinjected aconitine in one experiment, which accelerated its rate sufficiently to induce conduction block away from the focus. Yet the rhythm remained periodic as VT, and electrocardiographic VF did not occur. Thus, all three APD restitution-flattening drugs converted VF to VT, independent of their effects on APD and refractory period. These findings support the restitution hypothesis of VF.

Limitation of the study. To minimize the physiological effects of an electromechanical uncoupler on the patterns of activation in VF, we chose not to use an electromechanical uncoupler during baseline VF mapping studies. A limitation of optical mapping study is that cardiac contraction may result in significant motion artifact of the optical signals. This problem is most apparent during sinus or paced rhythm, when the ventricles contract vigorously. However, our previous studies (9) showed that the VF CLs and patterns of activation detected with the optical mapping system was the same with or without the electromechanical uncoupler cytochalasin D. These data suggest that in the swine RV, optical mapping of VF can be performed without the use of an electromechanical uncoupler.

We thank Ivan Velasquez, Avile McCullen, Meiling Yuan, Elaine Lebowitz, and Scott T. Lamp for assistance.

This study was performed during the tenure of Fellowship grants from the Save a Heart Foundation and the Israel Pacing Foundation (to M. Swissa), College of Medicine, Yonsei University, Seoul, Korea, and the Myung Sun Kim Memorial Foundation (both to M.-H. Lee). This study was also supported in part by National Heart, Lung, and Blood Institute Grants P50-HL-52319 and R01-HL-66389, American Heart Association (AHA) National Center Grant-in-Aid 9750623N and 9950464N, AHA National Center Scientist Development Grant 0130171N, Cedars-Sinai Electrocardiographic Heart Beat Organization Foundation Award UC-TRDRP 9RT-0041, the Kawata and Laubisch Endowments, a Pauline and Harold Price Endowment, and the Ralph M. Parsons Foundation (Los Angeles, CA).
REFERENCES

