DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth

XINGUO WANG, WEI ZHENG, LANCE P. CHRISTENSEN, AND ROBERT J. TOMANEK

Department of Anatomy and Cell Biology and The Cardiovascular Center,
University of Iowa, Iowa City, Iowa 52242

Submitted 28 May 2002; accepted in final form 22 October 2002

Address for reprint requests and other correspondence: R. J. Tomanek, Dept. of Anatomy and Cell Biology, 1-602 Bowen Science Bldg., Univ. of Iowa, Iowa City, IA 52242 (E-mail: robert-tomanek@uiowa.edu).

CORONARY ANGIOGENESIS during prenatal and postnatal growth is a well-established phenomenon. However, in the nonischemic adult heart, angiogenesis may or may not occur when the heart enlarges. Although some significant vascular growth may occur in certain animal models of hypertension (reviewed in Ref. 28), in patients with long-term left ventricular (LV) hypertrophy due to aortic stenosis, coronary reserve is usually markedly depressed even in the absence of coronary artery disease (5). In contrast, when hypertrophy occurs in response to volume overload, capillary and arteriolar growth are usually proportional to the magnitude of hypertrophy, and maximal coronary perfusion is maintained (2, 28). These findings support the concept that the stimulus evoking the hypertrophy is a determinant of angiogenesis. Perhaps the best example supporting this concept is thyroid hormone-induced hypertrophy, which is associated with a rapid and marked capillary growth (1, 3, 7, 14, 24–26, 30). Moreover, we have documented a normal maximal myocardial perfusion in rat hearts in which hypertrophy was induced with thyroxine, a finding that indicates compensatory growth of resistance vessels as well (25).

In a previous study, we showed that 3,5-diodothyropropionic acid (DITPA), a thyroxine analog, stimulates modest, early growth of the capillary bed in the myocardium surviving infarction (29). This agent has been shown to attenuate symptoms of heart failure after myocardial infarction through its positive inotropic effects (13, 15, 21). The favorable changes with DITPA treatment of rats or rabbits following coronary artery ligation and infarction include increased maximal positive and negative pressure development over time (dP/dt), increased basal time constant of isovolumic relaxation, and increased circumferential shortening and restoration of repolarizing transient outward K⁺ current (8, 13, 16, 31). Unlike thyroxine, DITPA is not significantly chronotropic (13) and accordingly is a safer therapeutic agent.

Because thyroxine is a potent stimulus for microvascular growth, DITPA, via its inotropic effects, may provide an angiogenic stimulus in the noninfarcted adult heart. Our study tested the hypotheses that DITPA treatment would 1) stimulate key angiogenic growth factors and 2) facilitate microvascular growth.

METHODS

Animal model. Male Sprague-Dawley rats weighing 325–350 g were randomly assigned to either a treatment or control group. All procedures were approved by The University of Iowa Animal Care and Use Committee and were in accordance with the regulations of the Animal Welfare Act of the National Institutes of Health Guide for the Care and Use of Laboratory Animals. One group of rats was injected daily with DITPA (3.75 mg/kg sc), and DITPA stock solution (20 mg/ml) was made with 0.01 N NaOH and stored at 4°C. Before the injection, DITPA was diluted to 5 mg/ml with 0.9% saline, and the pH was adjusted to 8.0. This dose of DITPA has previously been shown to improve LV hemodynamics and to regulate sarcoplasmic reticulum Ca2⁺-ATPase (12). The control group was injected with 0.9% saline. Hearts were

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
removed from rats at various time intervals, up to 3 wk, during the treatment period. The first phase of the study addressed the effects of DITPA on growth factor protein changes. Hearts for these experiments were obtained after 1, 2, 3, and 7 days of treatment and were compared with sham (vehicle) controls injected for the same periods. Therefore, each experiment was based on five rats (1 control and 4 DITPA-treated rats). To determine the effects of chronic DITPA treatment on myocardial angiogenesis, hearts arrested in diastole were perfused fixed with a glutaraldehyde solution as previously described (2). Arteriolar and capillary growth were assessed after 21 days of treatment. In one subgroup of rats, capillary growth was assessed after 10 days of treatment.

Western blotting for growth factor proteins. To quantify the abundance of the angiogenic factors vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) (FGF-2), angiopoietin-1, and its Tie-2 receptor, we performed Western blot analyses using their specific antibodies. Heart tissues from each group were homogenized in protein extraction buffer (1× phosphate-buffered saline, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 2× PMSF, 0.001% aprotinin, 0.001% leupeptin, and 0.001% pepstatin). Homogenates were centrifuged at 13,000 rpm for 10 min, and the supernatant was used for protein analysis. Proteins were measured by Bio-Rad protein assay dye (Bio-Rad). Fifty-microgram samples were run on polyacrylamide electrophoretic gels (SDS-PAGE) using 12% for VEGF and bFGF and 10% for angiopoietin-1. After separation, the proteins were transferred to polyvinylidene difluoride membranes. Protein prestain markers were run in each gel as a standard. The blots were blocked in TBS (20 mM Tris and 0.15 M NaCl, pH 7.4) containing 5% nonfat milk overnight. Blots were incubated for 2 h with specific primary antibodies (Santa Cruz Biotech; Santa Cruz, CA) and then incubated with corresponding secondary antibodies for 1 h. Immunoreactive bands were visualized with the use of the enhancement fluorochrome membranes.

Stereological image analysis of angiogenesis. Hearts from rats treated with DITPA for 3 wk and those from saline-injected controls were perfused fixed (at 120 mm Hg) as previously described, and specimens were excised (2). The specimens were dissected with reference to the orientation of muscle fibers. One-micrometer-thick sections of LV samples embedded in Spurr’s plastic were cut perpendicular to the long axis of muscle bundles, placed on glass slides, and stained with Richardson’s solution (Azure II and methylene blue). Images from these sections were captured and capillary and arteriolar parameters measured using Image Pro software (23, 27). Capillary analysis, based on 300–400 profiles from each region of the heart, included length density (total capillary length in 1 mm3 tissue), volume density, and diameter. Length density (Lv) was calculated as follows: \(L_v = (a/b)N_a \) length density (number of profiles per unit area). Lv is the best indicator of vascular growth because it represents the aggregate vessel length in a unit volume of tissue and is not affected by plane of sectioning. Volume density (Vv) was calculated as the product of \(\pi r_1^2 \times r_2^2 N_a \) where \(r_1 \) and \(r_2 \) are the long and short radii of the capillary. Arteriolar analyses were conducted as described above. Tissue sections were systematically scanned, and arterioles were identified and captured with the digital image analysis system. From each region of a rat heart, 100–125 arterioles were measured. The areas of tissue fields per heart averaged about 5–9 mm2.

Statistical analyses. For a one-way comparison between control and DITPA-treated groups, we utilized a Student’s t-test. For capillary data where two comparisons were made, we used ANOVA and the Bonferroni procedure for multiple comparisons. Analysis of growth factor changes over time was based on the Helmert Contrast t-values test. The latter tests the hypothesis that treatment affected a change by considering all of the time points together and comparing them to the nontreated control.

RESULTS

DITPA and heart mass and hemodynamics. Chronic administration of DITPA for 3 wk did not affect body mass, heart mass, or hemodynamics as documented by the data in Table 1. Arterial and ventricular pressures (systolic, diastolic, and mean) were virtually identical in the two groups. Because some growth occurred during the 3-wk period, as indicated by body weight increases of ~12%, the data suggest that the drug treatment did not interfere with this process. Moreover, because ventricular weights were similar in the two groups, the inotropic effects of DITPA did not cause cardiac hypertrophy. Thus DITPA did not alter any of the hemodynamics measured or growth of the heart.

DITPA and key growth factor protein. As seen in Figs. 1 and 2, VEGF and bFGF proteins increased in response to DITPA treatment. The increases in the septum and the LV free wall were comparable. We examined the increases in both VEGF164 and VEGF188, because they constitute the two major VEGF family members in the heart. In fact, VEGF188 protein levels in the heart are higher than VEGF164. The increases in VEGF164 tended to be slightly higher than those for VEGF188 (Fig. 1). Protein increases were already evident 24 h after treatment and were generally sustained over the 1-wk period studied. Increases in bFGF were also documented (Fig. 2). On the basis of the Helmert Contrasts t-values test, the overall increases in these proteins in response to DITPA treatment are statistically significant: VEGF164, \(P < 0.001 \); VEGF188, \(P < 0.002 \); bFGF, \(P < 0.001 \). We also conducted Western blot analyses for angiopoietin-1 and its Tie-2 receptor (Fig. 3). A modest, but significant (\(P < 0.002 \)), increase
in angiopoietin-1 was noted with DITPA treatment. Tie-2 increased by approximately twofold ($P < 0.001$) during the first week of treatment. We did not find significant differences between the increases in the LV free wall and the interventricular septum.

DITPA and vascular growth. Table 2 lists the data regarding capillary parameters, i.e., length density, volume density, and diameters, that we use to assess angiogenesis. Twenty-one days of DITPA treatment did not affect any of these parameters in either the LV free wall or the interventricular septum. To determine whether these capillary parameters increased transiently, we obtained data from four rats treated with DITPA for only 10 days. As seen in Table 2, length density in this group is higher than in the nontreated controls. However, the differences do not reach statistical significance due to the smaller mean diameters in the DITPA group. The frequency distributions for arteriolar diameters are illustrated in Fig. 5. The major difference between the DITPA and control groups is that the former has a higher percentage of arterioles with diameters $<10\mu m$ than the latter. This difference is seen in both the LV free wall and interventricular septum. These data are consistent with the increase in length density (Fig. 4) associated with DITPA treatment, i.e., neoformation of arterioles. Length density of arterioles $<16\mu m$ is 80 μm for the DITPA group compared with 52 for the control group.

DISCUSSION

The salient finding of this study is that DITPA, a thyroxine analog, stimulates coronary arteriolar growth. This growth is associated with elevations of VEGF$_{164}$, VEGF$_{188}$, bFGF, angiopoietin-1, and Tie-2 proteins and occurred in the absence of any alterations in arterial and ventricular pressures or heart mass. Although the arteriolar growth can be accounted for by the elevations in these growth factors, which together influence tube formation and smooth muscle recruitment (27), the mechanisms by which they are recruited
The possible stimuli are addressed in the subsequent discussion. Thyroid hormones and DITPA as modulators of angiogenesis. Several studies have shown that exogenous thyroid hormones lead to both cardiac hypertrophy and coronary angiogenesis (1, 3, 24–26, 30). In contrast, the thyroxine analog DITPA does not induce cardiac hypertrophy. We (24) previously showed that cardiac hypertrophy is not a prerequisite for angiogenesis in the thyroxine model. Accordingly, we hypothesized that chronic DITPA treatment would, by upregulating key growth factors, stimulate coronary angiogenesis in the absence of ischemia and hypertrophy. Interest in DITPA originated because of its potential for the treatment of heart failure (reviewed in Ref. 21). The data indicate that in the postinfarcted heart, DITPA improves systolic and diastolic function and that its effects are intrinsic to cardiac muscle. However, less is known about the effects of this agent in the normal, noninfarcted heart, although treatment in rabbits resulted in an increased circumferential shortening and enhanced velocity of shortening (−dP/dt) (13). Having previously documented capillary growth in infarcted hearts in rats treated with DITPA (29), we anticipated that this agent would also evoke capillary growth in noninfarcted hearts. However, although capillary growth is not supported by our data, we have documented growth of the arteriolar bed in response to chronic DITPA treatment. Length density is a key parameter for the quantification of vessel growth because it provides a measure of the aggregate length of a particular vessel in a given volume of tissue. Our finding that the DITPA group had more arterioles of the smallest diameter (<10 μm) fits with the finding that length density was higher in this group. These vessels represent neovascularization involving the arteriolar bed. That capillary length density was not elevated after 3 wk of treatment does not rule out the possibility of capillary formation at earlier time points followed by smooth muscle recruitment and the formation of arterioles. Our earlier finding that DITPA treatment stimulates capillary growth in the myocardium 10 days after infarction may have been influenced by ischemia, compensatory cardiac hypertrophy, and ventricular remodeling.

DITPA and growth factor enhancement. We (26) previously showed that proliferation of the capillary bed in response to thyroxine occurs in the venous ends of capillaries and coincides with upregulation of bFGF mRNA and protein. In the current study we have documented increases in several angiogenic growth factors in response to DITPA: bFGF, the two dominant VEGF splice variants (VEGF164 and VEGF188), and angiopoietin-1. Moreover, the increase in angiopoietin-1 was accompanied by an increase in its receptor Tie-2. Thus, in the nonischemic, nonhypertrophic myocardium, this thyroxine analog stimulates key growth factors that facilitate angiogenesis. VEGF is effective in stimulating all of the

Table 2. Myocardial capillary morphometry data

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 8)</th>
<th>DITPA Treated, 10 days (n = 4)</th>
<th>DITPA Treated, 21 days (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LV</td>
<td>Septum</td>
<td>LV</td>
</tr>
<tr>
<td>Length density, mm/mm³</td>
<td>8.887 ± 354</td>
<td>8.939 ± 276</td>
<td>9.894 ± 795</td>
</tr>
<tr>
<td>Volume density, mm³/mm³</td>
<td>10.79 ± 0.68</td>
<td>10.39 ± 0.64</td>
<td>10.01 ± 0.68</td>
</tr>
<tr>
<td>Diameter, μm</td>
<td>3.69 ± 0.11</td>
<td>3.59 ± 0.13</td>
<td>3.40 ± 0.16</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, number of rats. LV, left ventricular free wall.
major events in the angiogenic cascade, i.e., endothelial cell proliferation, migration, and tube formation (10).

Basic FGF also regulates endothelial cell growth (9) but in addition acts on smooth muscle cells (19). A role for bFGF in the growth of arterioles and arteries is well documented. First, arteriolar growth is dependent on bFGF as indicated by our previous work (27), which demonstrated inhibition of coronary arteriolar growth in neonatal rats treated with anti-bFGF-neutralizing antibodies. Second, bFGF protein administration to dogs with Aneroid occlusion of a coronary artery enhanced collateral development (11) and collateral perfusion (18). Third, arterial enlargement in response to high flow is preceded by increased bFGF levels in arterial smooth muscle cells (20). Thus our documentation of enhanced arteriolar length density with chronic DITPA treatment is consistent with the enhancement of bFGF and VEGF. Accordingly, our data suggest that DITPA may provide for better myocardial perfusion in situations where cardiac enlargement has occurred, e.g., cardiomyopathy and hypertension.

Our observation that angiopoietin-1 and its Tie-2 receptor proteins are elevated with DITPA treatment is not surprising because a role for angiopoietin-1/Tie-2 signaling in neovascularization is considered to be essential for both angiogenesis and endothelial cell survival (6). Moreover, angiopoietin-1 is upregulated by VEGF (4). This ligand and its receptor appear to function in vessel maturation because pericytes, the cells that are recruited to endothelial tubes late in the angiogenic cascade, express angiopoietin-1 both in vitro and in vivo (22). The fact that angiopoietin-1 expression is induced in healing skin wounds and in VEGF-induced angiogenesis indicates that it functions in adults.

How does DITPA increase angiogenic growth factors? Two major stimuli for coronary angiogenesis in the adult are enhanced metabolism or mechanical factors, i.e., shear stress or stretch. The former leads to increased myocardial perfusion, which may in turn enhance shear stress. Growth factor upregulation and/or angiogenesis in response to stretch has been documented in models of volume overload, including arteriovenous shunt (2) and bradycardia (32), and in in vitro experiments in which endothelial cells were subjected to cyclic stretch (33). In the thyroxine model, metabolism, and therefore O2, are elevated leading to increased myocardial perfusion and shear stress. Although DITPA is similar to thyroxine in that it is inotropic and lusitropic (8), it is not chronotropic nor does it significantly enhance O2 (21). The analog has been shown to affect a marked (44%) increase in LV circumferential shortening and a shortening of LV isovolumetric relaxation in baboons (8). In isolated ventricular myocytes from rabbits treated with DITPA, Ca2+ uptake in microsomal preparations was higher than in the nontreated group (17). These data taken together suggest more efficient ventricular function after treatment with this thyroxine analog, but they are contrasted with the metabolic effects of thyroxine, which would be likely to stimulate angiogenesis, namely increased O2 consumption and enhanced myocardial perfusion. How-

Fig. 4. Arteriolar length and volume densities. Data are means ± SE and number of rats is indicated in parentheses. *Significant intergroup difference (P = 0.02).

Fig. 5. Frequency distribution histogram of arteriolar diameters. In both the interventricular septum (A) and LV free wall (B), a higher proportion of small, terminal arterioles (<10 μm) occurs in the DITPA-treated groups. This finding is indicative of arteriolar neo-

AJP-Heart Circ Physiol • VOL 284 • FEBRUARY 2003 • www.ajpheart.org
ever, the major effects of DITPA, increased circumferen-
tial shortening and enhanced velocity of shortening
(−dP/dt), may jointly provide for a decrease in extravas-
tular compressive forces. This would then decrease the
time period of diminished microvessel diameter and in-
crease the time period in which the vascular dimensions
are characteristic of diastole.

In summary, this study has documented an angio-
genic effect of DITPA in the normal nonischemic, non-
infarcted heart. Although the usefulness of this thyrox-
ine analog in improving ventricular function of the
postinfarcted heart study is well documented, this
study is the first to show growth of arterioles, the major
resistance vessels, with chronic DITPA treatment.

The authors gratefully acknowledge the technical assistance of
Jennifer S. Holifield.

This study was supported by National Heart, Lung, and Blood
Institute Grant HL-62587.

REFERENCES

CM. Myocardial characteristics of thyroxine stimulated hyper-
2. Chen Y, Torry RJ, Baumbach GL, and Tomanek RJ. Pro-
portional arteriolar growth accompanies cardiac hypertrophy
induced by volume overload. Am J Physiol Heart Circ Physiol
3. Chilian WM, Wangler RD, Peters KG, Tomanek RJ, and
Marcus ML. Thyroxine-induced left ventricular hypertrophy in the
rat: anatomical and physiological evidence for angiogenesis.
4. Hangai M, Murata T, Miyawaki N, Spee C, Lim JI, He S,
Hinton DR, and Ryan SJ. Angiopoietin-1 upregulation by vascular
endothelial growth factor in human retinal pigment
5. Harrison DG, Marcus ML, Dellsperger KC, Lamping KL,
and Tomanek RJ, Pathophysiology of myocardial perfusion in
6. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, and
Li LY. Angiopoietin-1 and its receptor Tie-2 participate in the
regulation of capillary-like tubule formation and survival of
7. Heron MI, Kolar F, Papousek F, and Rakusan K. Early and
late effect of neonatal hypoxic-hyperthyroidism on coronary
capillary geometry and long-term heart function in rat. Cardio-
8. Hoit BD, Pawloski-Dahm CM, Shao Y, Gabel M, and Walsh
RA. The effects of a thyroid hormone analog on left ventricular
performance and contractile and calcium cycling proteins in the
9. Hughes SE and Hall PA. Overview of the fibroblast growth
factor and receptor families: complexity, functional diversity,
and implications for future cardiovascular research. Cardiovasc
10. Klische S and Waltenberger J. VEGF receptor signaling and
11. Lazarous DF, Shon M, Scheinowitz M, Hodge E, Thiru-
murti V, Kitaon AN, Stiber JA, Lobo AD, Humsberger S,
Guetta E, Epstein SE, and Unger EF. Comparative effects of basic
fibroblast growth factor and vascular endothelial growth factor
on coronary collateral development in the arterial re-
prevents the blunted contraction-frequency relationship in myo-
cytes from infarcted hearts. Am J Physiol Heart Circ Physiol
13. Mahaffey KW, Raya TE, Pennock GD, Morkin E, and Gold-
man S. Left ventricular performance and remodeling in rabbits
after myocardial infarction: effects of a thyroid hormone ana-
neovascularization in the rat heart: stereological studies on papillary
muscle in hypertrophy and physiologic growth. Basic Res Car-
15. Pennock GD, Raya TE, Bahl JJ, Goldman S, and Morkin E.
Cardiac effects of 3,5-dioiodothyropropionic acid, a thyroid analog with
16. Pennock GD, Raya TE, Bahl JJ, Goldman S, and Morkin E.
Combination treatment with captopril and the thyroid hormone ana-
17. Pennock GD, Spooner PH, Summers CE, and Litwin SE.
Prevention of abnormal saccular retilicum calcium transport and
protein expression in post-infarction heart failure using
3,5-dioiodothyropropionic acid (DITPA). J Mol Cell Cardiol
18. Rajanayagam MA, Shon M, Thirumurti V, Lazarous DF,
Guyyumi AA, Goncalves L, Stiber J, Epstein SE, and Un-
ger EF. Intracoronal basic fibroblast growth factor enhances
myocardial collateral perfusion in dogs. J Am Coll Cardiol
19. Reidy MA and Lindner V. Basic FGF and growth of arterial
20. Singh TM, Abe KY, Sasaki T, Zhuang YJ, Masuda H, and
Zarins CK. Basic fibroblast growth factor expression precedes
21. Spooner PH, Morkin E, and Goldman S. Thyroid hormone and
thyroid hormone analogues in the treatment of heart failure.
22. Sundberg C, Kowanetz M, Brown LF, Detmar M, and
Dvorak HF. Stable expression of angiopoietin-1 and other markers
by cultured pericytes: phenotypic similarities to a sub-
population of cells in maturing vessels during after stages of
23. Tomanek RJ, Aydelotte MR, and Torry RJ. Remodeling of
coronary vessels during aging in purebred beagles. Circ Res
24. Tomanek RJ and Busch TL. Coordinated capillary and myo-
cardial growth in response to thyroxine treatment. Anat Rec 251:
25. Tomanek RJ, Connel PM, Butters CA, and Torry RJ. Com-
pensated coronary microvascular growth in senescent rats with
thyroxine-induced cardiac hypertrophy. Am J Physiol Heart Circ
26. Tomanek RJ, Doty MK, and Sandra A. Early coronary an-
giogenesis in response to thyroxine: growth characteristics and
upregulation of basic fibroblast growth factor. Circ Res 82: 587–
27. Tomanek RJ, Sandra A, Zheng W, Brock T, Bjercke RJ,
and Holifield JS. Vascular endothelial growth factor and basic
fibroblast growth factor differentially modulate early postnatal
28. Tomanek RJ and Torry RJ. Growth of the coronary vascular-
tree in hypertrophy: mechanisms and model dependence. Cell
29. Tomanek RJ, Zimmerman MB, Suvarna PR, Morkin E,
Pennock GD, and Goldman S. A thyroid hormone analog
stimulates angiogenesis in the post-infarcted rat heart. J Mol
30. Wachtlova M, Ostadal B, and Mares V. Thyroxine-induced
cardiomegaly in rats of different age. Physiol Bohemoslov
31. Wickenden AD, Krapielian R, Xiao-Mang Y, and Backy
PH. The thyroid hormone analog restores TVE in rats after
myocardial infarction. Am J Physiol Heart Circ Physiol
RJ. Bradycardia-induced coronary angiogenesis is dependent on
33. Zheng W, Sefor EA, Meinerger CY, Hendrix MJC, and
Tomanek RJ. Mechanisms of coronary angiogenesis in re-
response to stretch: role of VEGF and TGF-B. Am J Physiol