Contributions of astrocytes and CO to pial arteriolar dilation to glutamate in newborn pigs

Charles W. Leffler, Helena Parfenova, Alexander L. Fedinec, Shyamali Basuroy, and Dilyara Tcheranova

Laboratory for Research in Neonatal Physiology, Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee

Submitted 6 July 2006; accepted in final form 28 July 2006

Leffler, Charles W., Helena Parfenova, Alexander L. Fedinec, Shyamali Basuroy, and Dilyara Tcheranova. Contributions of astrocytes and CO to pial arteriolar dilation to glutamate in newborn pigs. Am J Physiol Heart Circ Physiol 291: H2897–H2904, 2006.—Astrocytes can act as intermediaries between neurons and cerebral arterioles to regulate vascular tone in response to neuronal activity. Release of glutamate from presynaptic neurons increases blood flow to match metabolic demands. CO is a gasotransmitter that can be related to neural function and blood flow regulation in the brain. The present study addresses the hypothesis that glutamatergic stimulation promotes perivascular astrocyte CO production and pial arteriolar dilation in the newborn brain. Experiments used anesthetized newborn pigs with closed cranial windows, piglet astrocytes, and cerebrovascular endothelial cells in primary culture and immunocytochemical visualization of astrocytic markers. Pial arterioles and arteries of newborn pigs are ensheathed by astrocytes visualized by glial fibrillary acidic protein staining. Treatment (2 h) of astrocytes in culture with 1-2-α-aminoacidic acid (L-AAA), followed by 14 h in toxin free medium, dose-dependently increased cell detachment, suggesting injury. Conversely, 16 h of continuous exposure to L-AAA caused no decrease in endothelial cell attachment. In vivo, topical L-AAA (2 mM, 5 h) disrupted the cortical glia limitans histologically. Such treatment also eliminated pial arteriolar dilation to the astrocyte-dependent dilator ADP and to glutamate but not to isoproterenol or CO. Glutamate stimulated CO production by the brain surface that also was abolished following 1-AAA. In contrast, tetrodotoxin blocked dilation to N-methyl-d-aspartate but not to glutamate, isoproterenol, or CO or the glutamate-induced increase in CO. The concurrent loss of CO production and pial arteriolar dilation to glutamate following astrocyte injury suggests astrocytes may employ CO as a gasotransmitter for glutamatergic cerebrovascular dilation.

Astrocytes, neurons, and cerebromicrovascular endothelium all strongly express HO-2 (49). CO is a gasotransmitter that can be related to neural function (4) and blood flow regulation in the brain (31). In vivo, topical CO dilates newborn pial arterioles (30). Glutamate and glutamatergic seizures increase CO production by the piglet brain surface (9), and dilation to glutamate is selectively inhibited following topical treatment with chromium mesoporphyrin (CrMP) that blocks CO production (30).

Therefore, the present study was undertaken to address the hypothesis that glutamatergic stimulation promotes perivascular astrocyte CO production and pial arteriolar dilation in the newborn brain.

MATERIALS AND METHODS

Methods

All procedures that involve animals were reviewed and approved by the Animal Care and Use Committee of The University of Tennessee Health Science Center.

Cranial windows in vivo. Newborn pigs (1–3 days old) (1–2.5 kg) were anesthetized with ketamine hydrochloride (33 mg/kg im) and acepromazine (3.3 mg/kg im) and maintained on α-chloralose (50 mg/kg iv). The animals were intubated and ventilated with air. Catheters were inserted into the femoral vein for anesthesia, fluid, and drug injections and into the femoral artery to record blood pressure and draw samples for blood gas and pH analysis. Blood gases, pH, and body temperature were maintained within normal ranges. The scalp was retracted, and a hole, 2 cm in diameter, was made in the skull over the parietal cortex. The dura was cut without touching the brain, and all cut edges were retracted over the bone so that the periarachnoid space was not exposed to bone or damaged membranes. A stainless steel and glass cranial window was placed in the hole and cemented into place with dental acrylic. The space under the window was filled with artificial cerebrospinal fluid (aCSF) that was equilibrated with 6% CO2 and 6% O2 that produced gases and pH within the normal range for CSF (pH 7.33–7.40, PCO2 43–50 mmHg). Fluid under the window was exchanged via needle
ports on the sides of the window. Pial vessels were observed with a dissecting microscope. Diameters were measured with a video micro-meter coupled to a television camera mounted on the microscope and a video monitor. Data from one arteriole of ~60-μm diameter are reported from each piglet.

Astrocyte culture. Collection of astrocyte-enriched brain cortex isolates was accomplished by gentle homogenization of the piglet cortex in DMEM (1:10) followed by sequential filtration through 300-, 60-, 40-, 30-, and 20-μm nylon mesh filters. Cerebral vessels and microvessels are retained on the 300- and 60-μm filters, and neurons are retained on the 40-, 30-, and 20-μm filters. The 20-μm filtrate is an astrocyte-enriched fraction of cerebral cortex. Following homogenization, serial filtration, and centrifugation, pelleted brain filtrate was suspended in astrocyte growth-supporting media (DMEM with antibiotic/antimycotic, 10 ng/mL EGF, and 20% FBS). Astrocytes were grown in 75-ml flasks for 10–14 days, changing the media twice a week and replated to 12-well plates and grown in astrocyte media for 4–6 days to confluence. The astrocytes were identified by immuno-staining for glial fibrillary acidic protein (GFAP) and aquaporin-4, the major water channel expressed in brain perivascular astrocyte processes (41). Such staining indicates these procedures produce pure astrocyte cultures. Cell damage was estimated by the number of detached floating cells. Floating cells were pelleted at 3,000 g for 10 min at 4°C and counted using a microscope counting chamber.

Cerebrovascular endothelial cell primary cultures (43). Following gentle homogenization of piglet brain cortex, cerebral microvessels were collected by filtration of the homogenate through 300-μm and collection on 60-μm nylon mesh screens consecutively. Microvessels were treated with collagenase-dispase (2 mg/ml for 2 h at 37°C), and dissociated cerebral microvascular endothelial cells (CMVEC) were separated from other cells and tissue on a Percoll density gradient. CMVEC were plated on Matrigel-coated plates (3 x 10^4 cells/well) and grown at 37°C (5% CO_2-95% air) in DMEM with 20% FBS, 30 μg/μl endothelial cell growth supplement, 1 U/ml heparin, and antibiotic/antimycotic mixture for 5–6 days until confluent. Endothelial cells identified by immunostaining for von Willebrand factor accounted for at least 95% of the total cell population. As above for astrocytes, cell injury was estimated by the number of detached floating cells. Floating cells were pelleted at 3,000 g for 10 min at 4°C and counted using a microscope counting chamber.

Materials

CO was purchased as compressed gas (99.5%). Water was saturated with CO to produce a 10^-3 M stock solution. The stock was diluted in aCSF without air contact for injection under the cranial window at a concentration of 10^-7 M.

Rhodamine-phalloidin for F-actin staining was from Molecular Probes, Invitrogen (Carlsbad, CA). Antibodies against GFAP and aquaporin-4 were from US Biological (Swampscott, MA) and Abcam (Cambridge, MA), respectively. Second antibodies were from Vector Laboratories (Burlingame, CA).

Other reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise noted.

Experiments

Vascular responses. Isoproterenol (10^-7 M), ADP (10^-4 M), glutamate (10^-4 M), N-methyl-o-aspartate (NMDA; 10^-4 M), and CO (10^-7 M) were applied directly to pial arterioles, and the maximal diameter attained over a 5-min period is reported as the response to each dose. The 5-min period was selected because, with these agonists, onset of dilation on topical application is rapid with maximal diameter typically achieved within 3 min. The window was flushed with aCSF between treatments, and the pial arteriolar diameters were allowed to return to control diameters before the next agonist was applied. Control responses were compared with the same treatments after astrocyte injury or tetrodotoxin (TTX).

Astrocyte injury. Injury to the superficial cortical glia limitans under the cranial window was produced by treatment with the selective glia toxin l-2-α-aminoacidopropionic acid (l-AAA) (24, 55, 56). The high cellular specificity of l-AAA apparently results from the rapid uptake of the toxin by the cysteine-glutamate antiporter expressed by glia and not other brain cells (16, 47). The precise mechanism of injury remains uncertain. The method we used was modified from one developed to produce removal of the influence of glia limitans on pial arteriolar responses in the adult rat (55, 56). l-AAA (2 mM) was placed under the cranial window for 5 h and removed by flushing with aCSF. Khurgel (24) reported before that astrocyte injury occurred 4 h following intracerebral injection of l-AAA in rats. As a control amino acid, we used D-2-α-aminoacidopropionic acid (D-AAA), which does not cause degenerative changes in astrocytes or any other cell type (24).

Blockade of neural conduction. Blockade of neural conduction was accomplished with topical application of TTX (0.1 μM). Efficacy of TTX blockade on neural conduction was demonstrated by blockade of dilation to NMDA because in piglets TTX blocks dilation to NMDA without affecting dilations to isoproterenol (32). Different investigators have used different concentrations of TTX to produce selective removal of neural input. The most commonly used concentration has been 1 μM (17), including an earlier report by us (32). Higher concentrations have also been used and still seem to be specific (e.g., 10 μM (57)). However, Liu and Lee (34) showed that 0.1 μM blocked dilation of pig cerebral arterial rings to transmural nerve stimulation.

Cerebral CO production. Collections of CSF from under the cranial window were made during control and subsequent glutamate treatment before and after treatment with l-AAA. Collections were made after the CSF had been under the window for 5 min. To collect the CSF, fresh aCSF was injected into one needle port on the cranial window, and 400 μl of displaced CSF was collected in a glass vial through a metal spout on another port. By placing known concentrations of CO under the cranial window and then collecting that CSF for CO measurement, we have determined this collection method has an efficiency of ~100% (e.g., 10^-6 M placed under the window resulted in 1.00 ± 0.09 x 10^-6 M measured in the collections, n = 30). The total volume was increased to 1.4 ml. 33CO standard was added, and the vial was sealed with a rubber and Teflon cap. CO in the headspace gas was measured by GC-MS and quantified by comparison to the 33CO standard as we have described before (48).

Immunocytochemistry. Immunocytochemical staining was performed on slices of the cortical surface obtained after removal of the cranial windows from control and l-AAA-exposed pigs. Paraformaldehyde-fixed brain cortex was embedded in paraffin, and sections were cut at 5 μm. After deparaffinization and rehydration through xylene and graded alcohols, brain cortex slices were heat-treated for antigen unmasking. Endogenous peroxidase was quenched with 3% hydrogen peroxide for 45 min, and nonspecific antigen binding was blocked with normal horse serum (30 min, room temperature). Immunostaining for GFAP was performed using monoclonal anti-porcine GFAP (US Biological) and visualized with biotinylated goat anti-mouse IgG using the avidin-biotinylated enzyme complex technique (Vectastain ABC Kit, Vector Laboratories, Burlington, CA). Hematoxylin was used for counterstaining. Sections were rinsed in water, alcohol-dehydrated, and covered with a coverslip.

Immunofluorescence. GFAP immunofluorescence was investigated in pial arteries and arterioles and in cultured brain cortex astrocytes. Pial arteries and arterioles were dissected from the brain surface using a dissecting microscope. Care was taken to preserve cells adhering to the vessels. Dissected cerebral vessels were placed on microscope slides and air-dried. Astrocytes in culture were replated and cultured on Matrigel-coated coverslips placed in six-well plates to confluence. Cerebral vessels and astrocytes were fixed in 3.7% paraformaldehyde (pH 7.4) for 20 min at room temperature and permeabilized with 0.1% Triton X-100 in PBS for 20 min. Nonspecific binding sites were blocked with 5% BSA-PBS for 1 h. GFAP was immunostained with monoclonal anti-porcine GFAP (US Biological) and visualized with
fluorescein-conjugated anti-mouse IgG (Vector Laboratories). Aquaporin-4 immunostaining of astrocytes was performed using monoclonal antibodies from Abcam. For F-actin labeling and visualization, we used rhodamine phalloidin. Slides were briefly rinsed with water, air-dried, and covered with slips using Vectashield anti-fade mounting medium (Vector Laboratories). Slides were viewed using a Nikon Diaphot microscope with fluorescein and rhodamine filters, and images were deconvolved using IPLab spectrum software for image collection.

Statistical analysis. Values for each variable are presented as means ± SE. Comparisons among populations within each experimental group used ANOVA with repeated measures. The Tukey-Kramer multiple comparisons test was used to isolate differences between groups.

P < 0.05 was considered significant.

RESULTS

The pial arterioles and arteries of newborn pigs are ensheathed by astrocytes as visualized with positive staining for the astrocyte-specific marker GFAP (Fig. 1).

Using piglet astrocytes (Fig. 2) and cerebrovascular endothelial cells in primary culture, we investigated the specificity of the purportedly selective astrocyte toxin, L-AAA. Two-hour treatment of astrocytes with L-AAA (0.2–2 mM) followed by 14 h in toxin-free medium dose-dependently increased cell detachment with a nearly threefold elevation at 2 mM (Fig. 3). Astrocytes treated with 2 mM L-AAA showed marked retraction, loss of cell-to-cell contacts, and cytoskeletal changes at 1 h treatment with complete absence of normal cell structure and substantial cell loss by 4.5 h (Fig. 4). Conversely, even 16 h of continuous exposure to 2 mM L-AAA caused no increase in endothelial cell detachment (Fig. 3) or detectable morphological changes.

To selectively injure astrocytes in vivo, we treated the cortical surface with L-AAA (2 mM). Five-hour treatment produced histological evidence of injury to the superficial gli limitans detected as disruption of the confluent layer of GFAP-positive cells that were seen in control (Fig. 5). Such treatment also eliminated pial arteriolar dilation to the putative astrocyte-dependent dilator ADP (Fig. 6). L-AAA also abolished dilation of pial arterioles to glutamate (Fig. 6). It appears that the injury was limited to the astrocytes because dilations to isoproterenol, which increases cAMP via vascular smooth muscle β-adrenergic receptors, and CO, which activates vascular smooth muscle Ca2+-activated K+ (KCa) channels, were intact following L-AAA treatment (Fig. 6). The endothelium also appears to be intact because dilation to CO is endothelium dependent due to the necessity for endothelium-derived permissive mediators (3). The control amino acid D-AAA, administered exactly as was L-AAA, had no effect on pial arteriolar responses to glutamate, ADP, isoproterenol, or CO (data not shown).

CO could be a mediator of the astrocyte-induced dilations because HO inhibitors attenuate glutamatergic dilation of newborn pig arterioles (30). Treatment with glutamate stimulated CO production by the brain surface as detected in the aCSF collected from beneath the cranial window (Fig. 7). Glutamate stimulation of CO production was abolished following L-AAA-

Fig. 1. Freshly isolated newborn pial arterioles (left) and small artery (right) immunostained for glial fibrillary acidic protein (GFAP). Note the complete envelopment of the vessels with GFAP-positive processes.

Fig. 2. Piglet astrocytes in primary culture, immunostained for GFAP (left) and aquaporin-4 (right) (shown subconfluent for contrast).
induced astrocyte injury (Fig. 7) but was unaffected by D-AAA (data not shown).

In contrast, TTX (0.1 \mu M), which blocked dilation to NMDA, did not inhibit pial arteriolar dilation to glutamate (Fig. 8), nor the increase in CO (128\% and 255\% increase in CO before and after TTX, respectively; \(n = 4; P > 0.05 \)). TTX did not inhibit vasodilation to exogenously applied isoproterenol either (Fig. 8).

DISCUSSION

The new findings of the current study of newborn pigs are as follows. 1) Pial arterioles are ensheathed in astrocyte processes; 2) L-AAA severely alters cultured astrocyte morphology and causes astrocyte detachment but has no detectable effect on cultured endothelial cells; 3) L-AAA causes histologically evident disruption of the glia limitans in vivo; 4) L-AAA abolishes pial arteriolar dilation to glutamate as well as to the astrocyte-dependent dilator, ADP, but does not alter responses to isoproterenol or CO, endothelium-independent and -dependent dilators, respectively; 5) TTX blocks dilation of pial arterioles to NMDA but not to glutamate; and 6) L-AAA, but not TTX, blocks the ability of glutamate to stimulate CO production by the cerebral cortical surface. The concurrent loss of CO production and pial arteriolar dilation to glutamate following astrocyte injury suggests that the astrocytes may employ CO as a gasotransmitter for glutamatergic cerebrovascular dilation.

Glutamate is a dilator in the cerebral circulation in vivo (8, 11, 39). Release of glutamate from presynaptic neurons increases blood flow to match the increased metabolic demands of stimulated neurons (37). Neuronal activation in response to excitatory neurotransmitters may affect brain vessels via neurally derived vasorelaxant factors, including NO (11, 39, 51) and CO (2). Glutamate and selective NMDA- and \(\alpha \)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor agonists increase CO production by piglet cerebral microvessels (29, 43) and astrocytes (52). We found pressurized pial arteries respond to glutamate by endothelium-dependent vasodilation (14), although less strongly than in vivo (48). Of note, others have failed to detect glutamate receptor-mediated responses at all in isolated cerebral arteries (50). The smaller or absent dilatory response to glutamate in vitro compared with the in vivo response, coupled with similar dilator responses to isoproterenol in vitro and in vivo (2, 14, 53), suggests that cells underrepresented in the isolated arteriole contribute to the dilation in response to glutamate in vivo. The present data suggest that astrocytes, although immunodetectable on our isolated pial arterioles, could be the underrepresented cell type when the arteriole is removed from the intact brain. It is conceivable that the reason our pressurized pial arterioles dilated in response to glutamate while those of Simandle et al. (50) did not could relate to selection and handling of the vessels that resulted in the presence and absence of astrocytes, respectively.

In the cerebrovascular circulation, signals to vascular smooth muscle can come from endothelium, nerves, astrocytes, or pericytes, which interact to form a neurovascular unit (15). Astrocytes are the most abundant cell type in the higher mammalian brain. Parenchymal arterioles are ensheathed by astrocyte end-feet (15, 25), and pial arterioles are coated by astrocyte processes and end feet (present study). Astrocytes

Fig. 3. Effects of L-2-\(\alpha \)-amino adipic acid (L-AAA) on numbers of detached astrocytes (solid bars) (2 h treatment followed by 14 h) and endothelial cells (open bars) (16 h continuous treatment). \(*P < 0.05\) compared with no L-AAA; \(n = 6\) wells for each cell type.

Fig. 4. Effect of the astrocyte toxin L-AAA (2 mM) on confluent piglet astrocytes in primary culture. Immunostaining is for F-actin to show the cytoskeletal structure. Note the strong retractions of the astrocyte processes in the two panels treated with L-AAA [1 h (B) and 4.5 h (C)] compared with control (A).

AJP-Heart Circ Physiol • VOL 291 • DECEMBER 2006 • www.ajpheart.org

Downloaded from http://ajpheart.physiology.org/ by 10.220.33.3 on June 29, 2017
can act as intermediaries between neurons and cerebral blood vessels in regulation of cerebral vascular tone in response to neuronal activity, thereby adjusting cerebral blood flow to metabolism (15, 25). Astrocytes possess both metabotropic glutamate receptors and ionotropic glutamate receptors, but most studies have been unable to detect NMDA receptor-mediated responses in astrocytes (40). Metabotropic glutamate receptors and AMPA receptors are stimulated by glutamate to produce Ca\(^{2+}\) oscillations in astrocytes (45). Brain slice experiments have demonstrated that glutamate can elevate astrocyte cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_c\)) and reduce adjacent vascular smooth muscle [Ca\(^{2+}\)]\(_c\), producing vasodilation (13). However, the mechanism by which increased astrocyte [Ca\(^{2+}\)]\(_c\) produces decreased vascular smooth muscle [Ca\(^{2+}\)]\(_c\) is not known. We hypothesize that astrocyte-derived CO increases smooth muscle KCa channel activity, hyperpolarizing the myocytes, which decreases myocyte [Ca\(^{2+}\)]\(_c\), thereby providing a mechanism by which glutamate stimulation of the astrocyte can cause dilation of the arteriole.

The present results suggest pial vasodilation to glutamate is not mediated via the neuronal component of the neurovascular unit because TTX did not inhibit dilation to glutamate. TTX was effective because, as we showed before (32), TTX did block the dilatory response to NMDA. These data further suggest that the principal mechanism by which the topical glutamate produces dilation is not via activation of neuronal NMDA receptors. The inhibitory effect of TTX on NMDA-induced cerebrovascular dilation suggests activation of NMDA receptors on neurons causes release of a substance(s) that promotes dilation (11). Since Meng et al. (39) reported blockade of dilation to NMDA by N\(^{G}\)-nitro-L-arginine, a potential neuronal derived dilator is NO generated by neuronal NO synthase (nNOS). We recently demonstrated that NO can increase CO production by cerebral microvessels (28), so neuronally derived NO could stimulate CO production in astrocytes, neurons, endothelium, and/or vascular smooth muscle to cause dilation.
and blocks glutamate stimulation of CO production (5, 29), which inhibits calmodulin, decreases HO-2 catalytic activity in cerebral microvessels and endothelial cells (43). In contrast to the effects of functional removal of astrocytes, TTX did not affect responses to exogenous CO or isoproterenol. These data suggest glutamate could act on astrocyte glutamate receptors to stimulate CO production, which can, in turn, cause dilation of pial arterioles. That responses to exogenous CO were not changed by L-AAA suggests no depression in necessary endothelium-derived permissive factors (3, 31) is caused by L-AAA. Unaltered responses to isoproterenol indicate normal smooth muscle sensitivity to β-adrenergic receptor stimulation and cAMP. Specific glutamate receptors involved in elevating CO production and dilation in response to glutamate in astrocytes are not yet known. That TTX blocks vasodilation in response to NMDA, but not to glutamate, suggests a large component of glutamate-induced CO production and dilation is independent of NMDA receptors. We have found in endothelial cells that all of the ionotropic glutamate receptors, but not the metabotropic glutamate receptors, stimulate CO production (43), which is in contrast with data from rat neurons implicating metabotropic glutamate receptors (4). However, in the intact adult rat, pial arteriolar dilation to AMPA, but not to NMDA, is inhibited by treatment with the HO inhibitor CrMP (42), suggesting AMPA receptor stimulation may increase CO production, which contributes to vasodilation. These authors present data suggesting adenosine may be in the pathway between AMPA receptor stimulation and CO production.

In vascular smooth muscle cells, local intracellular Ca$^{2+}$ transients termed “Ca$^{2+}$ sparks” activate K$_{Ca}$ channels (22). Summation of transient K$_{Ca}$ currents induces a membrane hyperpolarization that reduces voltage-dependent Ca$^{2+}$ channel activity and thus intracellular Ca$^{2+}$ concentration. CO elevates K$_{Ca}$ channel Ca$^{2+}$ sensitivity (54), enhancing the effective coupling of Ca$^{2+}$ sparks to K$_{Ca}$ channels (20).

Whether the apparently increased vasodilatory sensitivity to CO observed in newborn pig cerebrovascular circulation compared with adult cerebral arteries (1, 26) is due to age, species, or both remains uncertain. However, developmental differences seem plausible considering low sensitivity to CO is found in isolated cerebral arteries from adult rats (1), rabbits (7), and dogs (26). Developmental mechanisms would not be surprising. In the newborn pig, cyclooxygenase activity, which stimulates HO-2 (23), and CO, which inhibits NOS (19), are elevated, which could contribute to the reduced functional significance of NO and the increased importance of CO in the neonatal cerebrovascular circulation. Further, HO levels in cerebrum are developmentally regulated with maximal HO expression in the mature fetus, compared with the immature fetus or adult (10).

Fig. 8. Effect of tetrodotoxin (TTX; 0.1 µM) on piglet pial arteriolar dilations to N-methyl-D-aspartate (NMDA; 10$^{-4}$ M), glutamate (10$^{-4}$ M), and ISO (10$^{-7}$ M). TTX blocked dilation to NMDA, demonstrating efficacy, but did not block dilations to glutamate or ISO; n = 7. *P < 0.05 compared with previous bar (respective control).

Neuronal control of cerebrovascular circulation can be mediated via NO. In adult animals, NO may be involved in neurally mediated dilation (15), and its role may be a permissive one (33). In piglets, neurally mediated dilation (39) also appears to involve NO. In adult rats, the origin of the NO involved in glutamatergic and hypoxic cerebral dilation appears to be nNOS rather than endothelial NOS (eNOS) (46).

In the present study, L-AAA abolished dilation to ADP. This is in contrast to previous research using adult rats where, although producing similar histological evidence of glia limitans disruption, L-AAA reduced dilation to ADP ~50% with the other 50% apparently being endothelium/eNOS-dependent (55, 56). The reason for this difference is not known but could relate to increased envelopment of pial vessels observed in piglets compared with adult rats where astrocyte processes are only found on the half of the vessel toward the brain (55, 56, present study). Whether the difference is related to species or age is unknown. However, an age-dependent component should be considered because eNOS-dependent cerebrovascular control mechanisms increase with age in the pig (53).

CO is produced physiologically by HO-catalyzed breakdown of heme to CO, iron, and biliverdin (35). Of the three known HO isoforms, only HO-2 expression is detected on Western blots of newborn pig brain (44). Glutamate stimulation of HO-2 catalytic activity results from metabotropic glutamate receptors in neurons (6) and ionotropic glutamate receptors in cerebral microvessels and endothelial cells (43). In both cerebral microvessels and cortical neurons, calmodilizum, which inhibits calmodulin, decreases HO-2 catalytic activity and blocks glutamate stimulation of CO production (5, 29).

The predominant mechanism responsible for CO-induced cerebral vasodilation is K$_{Ca}$ channel activation (31). CO activates K$_{Ca}$ channels in arterial smooth muscle by binding to channel-bound ferrous heme and changing the association of the heme with the channel leading to channel activation (21).
astocytes. Although there are multiple potential cerebral sources of CO, the astocytes are uniquely positioned to receive glutamatergic stimulation from topical glutamate receptor agonists and also excitatory nerves (18).

ACKNOWLEDGMENTS
We thank G. Short for assistance with preparation of figures.

GRANTS
This research was supported by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke.

REFERENCES
42. Pasti L, Volterra A, Pozzan T, and Carmignoto G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of commu-

