Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells

Lioubov I. Brueggemann,1 Christopher J. Moran,1 John A. Barakat,1 Jay Z. Yeh,2 Leanne L. Cribbs,1 and Kenneth L. Byron1

1Department of Pharmacology and Experimental Therapeutics and Cardiovascular Institute, Loyola University Chicago, Maywood; and 2Department of Pharmacology, Northwestern University, Chicago, Illinois

Submitted 16 January 2006; accepted in final form 25 October 2006

Address for reprint requests and other correspondence: K. L. Byron, Loyola Univ. Medical Center, Dept. of Pharmacology, 2160 South First Ave., Maywood, IL 60153 (e-mail: kbyron@lumc.edu).

Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. The stimulation of Ca2+-dependent action potentials, which underlie AVP-stimulated Ca2+ spiking, involves activation of a novel signaling pathway (5). Treatment of A7r5 cells with 100 μM AVP leads to increased tyrosine phosphorylation of Kv1.2 delayed rectifier K+ channels (3). We previously speculated (3) that tyrosine phosphorylation of Kv1.2 channels inhibits their function and thereby induces the membrane depolarization that is required for L-type Ca2+ channel activation.

We have previously demonstrated that concentrations of [Arg8]-vasopressin (AVP) that may be found in the systemic circulation (10–500 pM) modulate the frequency of L-type Ca2+ channel-dependent Ca2+ spikes in A7r5 rat aortic smooth muscle cells. The stimulation of Ca2+-dependent action potentials, which underlie AVP-stimulated Ca2+ spiking, involves activation of a novel signaling pathway (5). Treatment of A7r5 cells with 100 μM AVP leads to increased tyrosine phosphorylation of Kv1.2 delayed rectifier K+ channels (3). We previously speculated (3) that tyrosine phosphorylation of Kv1.2 channels inhibits their function and thereby induces the membrane depolarization that is required for L-type Ca2+ channel activation.

The signal transduction pathway leading to Kv1.2 phosphorylation and Ca2+ spiking requires activation of protein kinase C (PKC) (3, 14). The present study provides the first electrophysiological evidence that activation of PKC at physiological concentrations of AVP leads to inhibition of an outward voltage-sensitive K+ current, depolarizes the membrane, and induces action potential generation in vascular smooth muscle cells. This mechanism may be of fundamental importance to understanding how vasoconstrictor hormones regulate smooth muscle excitability.

The identity of the K+ channels involved in the actions of AVP may be inferred from the electrophysiological and pharmacological characteristics of the K+ current that is inhibited. These characteristics do not match those expected of Kv1.2 channels, but rather fit the known properties of KCNQ channels, a family of K+ channels whose best known roles are as mediators of the “M current,” a slowly activating, delayed rectifier K+ current targeted by acetylcholine in the regulation of neuronal excitability. Although KCNQ channels have no previously identified role in vasoconstrictor actions, we have detected expression of KCNQ5 in A7r5 cells and in isolated rat aortic smooth muscle and provide evidence that these channels are targeted in a PKC-dependent manner by physiological vasoconstrictor concentrations of AVP.

MATERIALS AND METHODS

Patch clamp. A7r5 cells grown to confluence in cell culture as described previously (5) were trypsinized and replated on glass coverslips. Within 4 h of replating, the whole cell perforated-patch configuration was used to measure membrane currents under voltage-clamp conditions and membrane potentials under current-clamp conditions in single cells. All experiments were performed at room temperature.
temperature with continuous perfusion of bath solution. Resistances of patch pipettes were 1.5−2.5 MΩ after being filled with internal solutions. Series resistance was not compensated.

The standard bath solution contained (in mM) 5 KCl, 130 NaCl, 10 HEPES, 2 CaCl₂, 1.2 MgCl₂, and 5 glucose, pH 7.3. Standard internal (pipette) solution contained (in mM) 110 K-gluconate, 30 KCl, 5 HEPES, 1 K₂EGTA, and 2 Na₂ATP, pH 7.2. Osmolality was adjusted to 268 mosmol/l with d-glucose. Amphotericin B (200 μg/ml) in internal solution was used for membrane patch perforation. Experiments in whole cell perforated-patch configuration were started with series resistance (Rₛ) below 30 MΩ; cells with an abrupt decrease in Rₛ were discarded. Stable control currents were recorded for 10−20 min before bath application of pharmacological agents.

Voltage-clamp command potentials were generated using an Axopatch 200B amplifier under control of pCLAMP8 software. Currents were recorded by application of 1- or 5-s voltage steps from a −74-mV holding potential to test potentials ranging from −94 to +46 mV. Voltage commands were applied every 5 or 10 s; results were then normalized to the membrane capacitance. Whole cell currents were digitized at 10 kHz and filtered at 1 kHz for 1-s voltage step duration and digitized at 2 kHz and filtered at 200 Hz for 5 s voltage step duration. We averaged 1,000 points (corresponding to 100-ms recording time with a 1-s voltage step or 500-ms recording time with a 5-s voltage step) to obtain end-pulse steady-state K⁺ current. Whole cell capacitance was compensated. Leak subtraction was performed for some experiments (see legends) by extrapolation of the linear portion of the current-voltage (I-V) curve negative to −69 mV as described by Passmore et al. (40). Liquid junction potentials were calculated using Junction Potential Calculator provided by pCLAMP8 software and subtracted off-line. To analyze the voltage dependence of channel activation, we fitted the conductance calculated from the tail currents (measured at −30 mV after steps from −74 mV to voltages between −94 and +36 mV) with a Boltzmann distribution:

\[G/G_{\text{max}} = 1/(1 + \exp((V_{0.5} - V)/s)) \]

where \(G/G_{\text{max}} \) is fractional maximal conductance, \(V_{0.5} \) is the voltage of half-maximal activation, and \(s \) is the slope factor.

Current-clamp recording of membrane potential was performed in current-clamp fast mode with \(h_{\text{pa}} = 0 \) pA. Data are presented as means ± SE. For comparisons between two groups, Student’s t-test, paired or unpaired as appropriate, was used for statistical analysis, with \(P \) values <0.05 considered statistically significant.

\([\text{Ca}^{2+}]_i\) measurements. Essentially as described previously (5, 6), A7r5 cells were grown to confluence on glass coverslips or six-well plates. The cells were washed twice with control medium (135 mM NaCl, 5.9 mM KCl, 1.5 mM CaCl₂, 1.2 mM MgCl₂, 11.5 mM glucose, and 11.6 mM HEPES, pH 7.3) and then incubated in the same medium with 2% paraformaldehyde in phosphate-buffered saline (PBS; 138 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄, and 1.2 mM K₂HPO₄, pH 7.4) for 15 min, followed by a 2-h blocking step with 10% goat serum. Coverslips were washed three times with 0.1% Triton X-100 in PBS, and incubated with anti-KCNQ5 shRNA lentivirus (System Biosciences). The vector is designed to coexpress copGFP protein, a monomeric green fluorescent protein (GFP) cloned from the copepod, Pontellina plumata. Replication-deficient shRNA lentivirus was prepared using the pPACK-H1 Lentivirus Packaging system and 293 TN producer cell line according to the manufacturer’s protocol. Adherent A7r5 cells in culture were infected with lv-KCNQ5_shRNA by using Polybrene (hexadimethrine bromide; Sigma). Five to seven days later, GFP-positive cells were chosen for electrophysiological recordings. A GFP control lentivirus, lv-GFP, was constructed in parallel with pPACK-H1 replicon packaging system and 293 TN producer cell line according to the manufacturer’s instructions. A7r5 cells in culture were infected with lv-KCNQ5_shRNA by using Polybrene (hexadimethrine bromide; Sigma). Five to seven days later, GFP-positive cells were chosen for electrophysiological recordings. A GFP control lentivirus, lv-GFP, was constructed in parallel with pPACK-H1 lentivirus packaging system and 293 TN producer cell line according to the manufacturer’s instructions. A7r5 cells in culture were infected with lv-KCNQ5_shRNA by using Polybrene (hexadimethrine bromide; Sigma). Five to seven days later, GFP-positive cells were chosen for electrophysiological recordings. A GFP control lentivirus, lv-GFP, was constructed in parallel with pPACK-H1 lentivirus packaging system and 293 TN producer cell line according to the manufacturer’s instructions. A7r5 cells in culture were infected with lv-KCNQ5_shRNA by using Polybrene (hexadimethrine bromide; Sigma). Five to seven days later, GFP-positive cells were chosen for electrophysiological recordings. A GFP control lentivirus, lv-GFP, was constructed in parallel with pPACK-H1 lentivirus packaging system and 293 TN producer cell line according to the manufacturer’s instructions. A7r5 cells in culture were infected with lv-KCNQ5_shRNA by using Polybrene (hexadimethrine bromide; Sigma). Five to seven days later, GFP-positive cells were chosen for electrophysiological recordings. A GFP control lentivirus, lv-GFP, was constructed in parallel with pPACK-H1 lentivirus packaging system and 293 TN producer cell line according to the manufacturer’s instructions.

Immunohistochemical detection of KCNQ5. A7r5 cells were cultured on 12-mm round glass coverslips and infected with lv-GFP_KCNQ5_shRNA as described above. The cells were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS; 138 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄, and 1.2 mM K₂HPO₄, pH 7.4) for 15 min, washed twice with PBS, and permeabilized with 0.5% Triton X-100 (Sigma) in PBS for 15 min. After being washed with 0.1% Triton X-100 in PBS, coverslips were blocked with Image-iT FX signal enhancer (Molecular Probes, Eugene, OR) according to the manufacturer’s instructions for 30 min, followed by an additional 2-h blocking step with 10% goat serum. Coverslips were washed three times with 0.1% Triton X-100 in PBS and incubated with rabbit polyclonal anti-KCNQ5 antibodies (Chemicon International, Temecula, CA) at 1:500 dilution for 2 h at room temperature. After three washing steps with 0.1% Triton X-100 in PBS for 15 min each, coverslips were incubated for 2 h at room temperature in the dark with Alexa Fluor 594 goat anti-rabbit IgG secondary antibody (1:400 dilution in 0.1% Triton X-100 plus 10% goat serum in PBS). Three additional washing steps for 15 min with 0.1% Triton X-100 in PBS were performed before coverslips were mounted on glass slides using the SlowFade light antifade kit (Molecular Probes). Cell images were acquired using a C Imaging System (Compi) with an Olympus 1X71
inverted epifluorescence microscope (×10 fluorescent objective) and Simple PCI software (version 5.3.1). Two images of each field were captured, at 490-nm excitation wavelength for GFP fluorescence and at 595-nm excitation wavelength for Alexa Fluor 594 fluorescence, respectively. Regions of interest were defined by outlining cells expressing or not expressing GFP fluorescence (identified using 490-nm excitation). Digital images captured using 595-nm excitation were analyzed for mean pixel intensity of regions of interest. Coverslips incubated without primary antibody had no detectable fluorescence with 595-nm excitation (results not shown).

Materials. Cell culture media were obtained from GIBCO-BRL (Gaithersburg, MD) or MediaTech (Herndon, VA). Fura-2 AM, fura-2 pentapotassium salt, and Pluronic F127 were obtained from Molecular Probes. 4β-Phorbol 12-myristate 13-acetate (PMA) was obtained from Calbiochem (San Diego, CA). Correolide was generously provided by Merck Research Laboratories (Rahway, NJ).

RESULTS

To evaluate the hypothesis that the previously observed phosphorylation of K_v channels in A7r5 cells is associated with a reduction of outward K_v currents, we utilized whole cell perforated-patch clamp techniques to measure K_v currents. Under physiological ionic conditions similar to those used for previous Ca$^{2+}$ spiking studies, a voltage step protocol was applied to simultaneously record inward currents through L-type Ca$^{2+}$ channels (I_{CaL}, at the beginning of the pulse) and outward current through K$^+$ channels (after inactivation of L-type currents at the end of the pulse). As shown in Fig. 1, by stepping to different voltages, a typical inward I_{CaL} was detected at the beginning of the pulse, which reached a mean peak at $+1 \pm 1.3$ mV ($n=13$), whereas an outwardly rectifying current developed after a delay, reaching a steadystate level at the end of the pulse. The amplitude of the initial inward current and the amplitude of the delayed outward current are plotted in Fig. 1C to depict the I-V relationships. The delayed outward current component is likely to be a mix of currents, but the reversal potential (E_{rev}) of outward current at -51.4 ± 3.1 mV ($n=16$) indicates that K$^+$ is the predominant current carrier under these ionic conditions. In support of this contention, increasing external [K$^+$] from 5 to 140 mM induced a shift in E_{rev} of the outward current from -49.4 ± 5.5 to $+8.4 \pm 1.9$ mV ($n=4$, data not shown). Increased variability of outward currents at positive potentials may reflect an increased contribution of Ca$^{2+}$-activated K$^+$ currents (I_{Ca}) following Ca$^{2+}$ influx through L-type Ca$^{2+}$ channels.

A 10-min exposure to 100 pM AVP, a concentration shown in previous studies to stimulate repetitive Ca$^{2+}$ spiking in these cells, significantly inhibited the outward K$^+$ current at membrane potentials between -44 and -14 mV (74% inhibition on average over this voltage range, $n=5$) but had no effect on I_{CaL} (Fig. 1, B and C). Action potential firing, the electrophysiological equivalent of Ca$^{2+}$ spiking, was observed in the same cells by switching to current-clamp recording conditions (Fig. 1D).

Whole cell current-clamp recordings revealed that 100 pM AVP induced a gradual depolarization of the membrane, which eventually triggered repetitive action potential firing with a mean latency of 5.7 ± 0.8 min ($n=6$, Fig. 2A).

Membrane depolarization might occur either by activation of inward currents (e.g., Na$^+$, Ca$^{2+}$, Cl$^-$) or by inhibition of outward K$^+$ currents. Activation of inward currents would decrease membrane resistance, whereas inhibition of K$^+$ currents would increase membrane resistance. We found that AVP significantly increased membrane resistance (from 1.44 ± 0.27 to $2.26 \pm 0.41 \, \Omega\, \Omega$, measured under voltage-clamp conditions before and 10 min after application of 100 pM AVP, $n=7$, $P<0.005$; Fig. 2). This effect was associated with a 10-mV depolarization of the membrane (from -55.9 ± 1.6 to -45.2 ± 1.4 mV, $n=8$, $P<0.001$) measured before action potential firing in the same cells.

Fig. 1. Inhibition of K$^+$ currents in a single A7r5 cell by AVP triggers action potential (AP) generation. A and B: original current traces recorded in a single A7r5 cell before (A) and after (B) application of 100 pM AVP for 10 min. Step voltage protocol is shown in A. C: sustained outward currents were evaluated by averaging 1,000 points collected over the last 100 ms of the voltage pulse, and L-type Ca$^{2+}$ currents were evaluated by measuring the peak inward current. Mean current recorded at the end of the pulse (circles) and peak current recorded at the beginning of the pulse (triangles) in control (filled symbols) and after application of 100 pM AVP (open symbols) are shown ($n=5$). I, current; V, voltage. $*P<0.05$, statistically significant differences from control (Student’s t-test). D: APs stimulated by 100 pM AVP, recorded in the same cell in current-clamp mode. Similar results were obtained in 6 experiments.
If AVP stimulates Ca\(^{2+}\) spiking by inhibition of K\(^+\) channels, one might predict that K\(^+\) channel blockers would mimic the effects of AVP in A7r5 cells. As shown in Fig. 3A, BaCl\(_2\), a nonselective K\(^+\) channel blocker (49), stimulated Ca\(^{2+}\) spiking in A7r5 cells in a concentration-dependent manner, reminiscent of the effects of AVP (5). Moreover, 100 μM BaCl\(_2\) also mimicked AVP in inhibiting outward K\(^+\) currents without affecting the amplitude of L-type Ca\(^{2+}\) current (Fig. 3B) and triggered action potential firing in single A7r5 cells (Fig. 3C).

As noted above, outward currents recorded at positive test potentials may reflect a contribution of \(I_{KCa}\), following Ca\(^{2+}\) influx through L-type Ca\(^{2+}\) channels. To examine the regulation of K\(_v\) currents more specifically, we used a combination of verapamil, a Ca\(^{2+}\) channel blocker, and iberiotoxin, a blocker of large-conductance Ca\(^{2+}\)-activated K\(^+\) channels (BKCa) to record K\(_v\) currents in isolation from L-type Ca\(^{2+}\) currents and \(I_{BKCa}\) currents. Including 10 μM verapamil and 100 nM iberiotoxin in the external solution abolished the inward L-type currents and diminished a component of the outward K\(_v\) current (Fig. 4A). An outwardly rectifying K\(_v\) current remained in the presence of the verapamil-iberiotoxin cocktail. To rule out additional contributions of iberiotoxin-insensitive, Ca\(^{2+}\)-activated K\(^+\) currents (53, 57, 59) that may be activated by verapamil-insensitive Ca\(^{2+}\) influx, we tested the effects of gadolinium (Gd\(^{3+}\)), a cation channel blocker that effectively inhibits Ca\(^{2+}\) influx via both voltage-sensitive Ca\(^{2+}\) currents and nonselective cation currents. There was no significant reduction of the remaining K\(_v\) current when verapamil-iberiotoxin was replaced by 100 μM Gd\(^{3+}\) (Fig. 4A) or when iberiotoxin was added following Gd\(^{3+}\) (Fig. 5A), suggesting that blocking Ca\(^{2+}\) influx with Gd\(^{3+}\) is sufficient to prevent activation of \(I_{KCa}\) and effectively isolates K\(_v\) currents from other contaminating currents (Fig. 4, A–C). Under these conditions, a normalized conductance-voltage plot was well fit by a single Boltzmann curve with a \(V_{0.5} = -38 \pm 1.6\) mV and a slope \(s = 8.3 \pm 0.4\) mV (Fig. 4D). The isolated K\(_v\) recorded in the presence of Gd\(^{3+}\) may account for the AVP-inhibited outward current under physiological conditions (Fig. 1), because it was inhibited by 100 pM AVP with a time constant of 6.1 ± 1.1 min (Fig. 4, E and F).

To investigate the extent to which different kinds of K\(^+\) channels contribute to the AVP-sensitive K\(_v\) current, we tested several relatively selective pharmacological agents that are often used to distinguish among K\(^+\) channel classes. Treatment of A7r5 cells with 100 nM iberiotoxin, a specific inhibitor of BKCa channels, did not inhibit the AVP-sensitive K\(_v\) current (Fig. 5A) and did not induce depolarization of membrane potential or trigger Ca\(^{2+}\) spiking (not shown). Although glibenclamide (10 μM), a selective inhibitor of ATP-sensitive K\(^+\) channels, significantly reduced K\(_v\) currents at positive voltages (by ~20%; Fig. 5B), it did not inhibit current over the physiological range of resting membrane potentials and did not activate Ca\(^{2+}\) spiking in A7r5 cells (not shown), suggesting a nonessential contribution of ATP-sensitive channels to the resting K\(_v\) current. A relatively selective inhibitor of K\(_v\) channels, 4-aminopyridine (4-AP; 1 mM), induced a slight positive shift of activation voltage dependence without significant inhibition of the current (Fig. 5C). A nonspecific K\(^+\) channel blocker, Ba\(^{2+}\) (100 μM), significantly inhibited ~70%
of K⁺ currents at negative potentials, with this value diminishing to ~40% as the membrane potentials were raised to +36 mV (Fig. 5, D and E). A specific Kv1 family inhibitor, correolide (1 μM) (15, 21), significantly reduced Kᵥ currents in A7r5 cells (by 52 ± 7%; Fig. 5F). Block of Iₖᵥ by correolide was voltage independent, and there was no shift of the voltage activation curve (not shown). Unlike BaCl₂ (Fig. 3), correolide treatment did not stimulate Ca²⁺ spiking or action potential generation (not shown).

KCNQ or Kv7 family channels may contribute to Kᵥ currents in vascular smooth muscle cells (39, 60). We tested the effects of the selective KCNQ channel blockers linopirdine (100 μM) and XE991 (10 μM) and found that both agents significantly inhibited Iₖᵥ in A7r5 cells (by 52 ± 7%; Fig. 5F). Block of Iₖᵥ by linopirdine was voltage independent, and there was no shift of the voltage activation curve (not shown). Unlike BaCl₂ (Fig. 3), linopirdine revealed that within 15 min of addition of 100 μM BaCl₂, a nonselective K+ current blocker (representative of 5 similar experiments). Similar to AVP, 100 μM BaCl₂ inhibits outward K⁺ current and activates AP firing.

To identify the subtypes of KCNQ channels that may be expressed in A7r5 cells, we prepared mRNA from A7r5 cells or isolated smooth muscle from rat thoracic aorta and performed RT-PCR using primers selective for each of the known KCNQ family members (KCNQ1–5). Rat brain mRNA served as a positive control for each KCNQ subtype. KCNQ5 was detected in both A7r5 cells and rat aorta (Fig. 7). KCNQ1 was also expressed in aorta but not in A7r5 cells; neither A7r5 cells nor aorta detectably expressed KCNQ2–4.

RNA interference techniques were used to knock down expression of KCNQ5 in A7r5 cells. We constructed a lentiviral vector for expression of a KCNQ5 shRNA (lv-GFP_KCNQ5-shRNA) with coexpression of GFP. Infection of A7r5 cells with lv-GFP_KCNQ5-shRNA resulted in ~20–30% of the cell population exhibiting GFP fluorescence 5–7 days after infection. Immunofluorescence staining revealed a significant reduction in KCNQ5 immunoreactivity in GFP-expressing cells compared with non-GFP-expressing cells in the same culture (Fig. 8, A and B). Whole cell patch clamp of the lv-GFP_KCNQ5-shRNA-infected fluorescent cells revealed that Iₖᵥ was significantly smaller than that recorded from fluorescent cells infected with a GFP control virus (lv-GFP, Fig. 8C).

KCNQ channels, and KCNQ5 in particular, may be regulated by activation of protein kinase C (11). We have previously presented evidence that PKC activation is a necessary step in the stimulation of Ca²⁺ spiking by AVP (14). Direct activation of PKC with PMA was shown to be effective in stimulating Ca²⁺ spiking (3, 14). To test the hypothesis that inhibition of Kᵥ currents may be a consequence of PKC activation, we examined the effects of PMA on Iₖᵥ. We found that PMA mimicked AVP in inhibition of Iₖᵥ currents (Fig.

Fig. 3. K⁺ channel blocker BaCl₂ mimics AVP in inhibition of Kᵥ currents, stimulation of AP firing, and Ca²⁺ spiking. A: Ca²⁺ spiking activity (intracellular Ca²⁺ concentration, [Ca²⁺]) in a population of A7r5 cells in response to BaCl₂, a nonselective K+ channel blocker (representative of 5 similar experiments). Similar to AVP, 100 μM BaCl₂ inhibits outward K⁺ current and activates AP firing. B: mean current recorded at the end of the pulse (circles) and peak current recorded at the beginning of the pulse (triangles) in control (filled symbols) and in the presence of 100 μM BaCl₂ (open symbols). Data are presented as means ± SE, n = 5. *P < 0.05, statistically significant differences from the control (paired Student’s t-test). C: representative trace of Vm recorded in current-clamp mode showing stimulation of AP generation by 100 μM BaCl₂ in a single A7r5 cell.
same single cells. Our results confirm that sustained outward K currents under conditions in which action potentials are induced in the CAVP (Fig. 9). The same treatment with calphostin C was previously found to prevent AVP-stimulated Ca2+ spiking (14). Furthermore, pretreatment with the PKC inhibitor calphostin C (250 nM) prevented the inhibition of \(I_{Kv} \) by 100 pM AVP (Fig. 9C). The same treatment with calphostin C was previously found to prevent AVP-stimulated Ca2+ spiking (14).

DISCUSSION

The present study is the first to examine effects of physiological concentrations of AVP on K+ currents in vascular smooth muscle cells under conditions in which action potentials are induced in the same single cells. Our results confirm that sustained outward K+ currents in A7r5 cells are inhibited in response to physiological concentrations of AVP and that this results in membrane depolarization and firing of action potentials. Importantly, this effect appears to be mediated by KCNQ5 channels, which have not been previously identified as a target for vasoconstrictor hormones. PKC activation is both necessary and sufficient to induce this response. We propose that this mechanism (PKC-dependent KCNQ channel inhibition and repetitive firing of Ca2+-dependent action potentials) underlies the stimulation of Ca2+ spiking by AVP in A7r5 cells and may account for the physiological vasoconstrctor effects exerted by the low concentrations of AVP found in the systemic circulation.

The ability of vasoconstrictor hormones to stimulate arterial vasomotion (rhythmic constrictions of resistance arteries) has been recognized for several decades. These constrictions are associated with action potential firing in the vascular smooth muscle cells of the artery wall (17). The presumed mechanism underlying the stimulation of action potential firing is a depolarization of the smooth muscle cell plasma membrane (sarcolemma) to a threshold potential at which the regenerative opening of voltage-sensitive Ca2+ channels would produce the steeply rising phase of the action potential. The entry of Ca2+ into the cytosol would then result in activation of the cell’s contractile apparatus.

Fig. 4. Isolation of AVP-sensitive \(I_{Kv} \) currents in single A7r5 cells. A: mean current recorded at the end of the pulse (●) and peak inward current recorded at the beginning of the pulse in control (○) followed by application of 10 µM verapamil plus 100 nM ibetoxotoxin for 10 min (▲). Verapamil and iberixotoxin were then replaced with 100 µM GdCl3 (■) for an additional 10 min (n = 4). Peak inward currents recorded in the presence of verapamil plus iberixotoxin and GdCl3 were omitted for clarity. B: representative traces of current recorded in the presence of 100 µM GdCl3 in external solution to isolate \(I_{Kv} \) component (top). With a holding potential of −74 mV, a voltage step protocol was applied to test potentials from −94 to +36 mV, followed by steps to −30 mV for tail-current recording. Dotted line indicates 0 current level. C: mean current recorded at the end of the pulse (1,000 points recorded over the last 500 ms were averaged) from the traces presented in B after leak subtraction and normalization to the cell capacitance (C = 284 pF). D: voltage dependence of steady-state activation fitted by the single Boltzmann function (solid line, see MATERIALS AND METHODS). Conductance was calculated from the tail currents measured at −30 mV based on a K+ reversal potential of −84 mV. Voltage of half-maximal activation (\(V_{1/2} \)) = −38 ± 1.6 mV; slope factor (\(s \)) = 8.3 ± 0.4 mV (n = 21); \(G/G_{max} \), fractional maximal conductance. E: time course of \(I_{Kv} \), current inhibition by 100 pM AVP recorded by applying a 5-s step to a membrane potential of 0 mV from a holding potential of −74 mV at 15-s intervals. Currents were normalized to mean control current \((I_c) \) recorded for 10 min before adding AVP (n = 7). F: I-V curves of mean outward current measured in the presence of 100 µM Gd3+ in control and after exposure to 100 pM AVP for 15 min. After leak subtraction, currents were normalized to the maximal control current \((I_{max}) \) measured at +36 mV. AVP significantly reduced \(I_{Kv} \) current at all membrane potentials from −54 to +36 mV (n = 7, P < 0.05, paired Student’s t-test).
Membrane depolarization generally involves alterations in transmembrane ion fluxes. Vasoconstrictor hormones may positively or negatively affect a variety of ion channels, including voltage-sensitive Ca\(^{2+}\)/H\(^+\) channels, nonselective cation channels, K\(^+\) channels, and Cl\(^-\) channels. The physiological ionic conditions in the cytosol and extracellular environment of vascular smooth muscle cells dictate that depolarization of the membrane from its resting potential would most readily occur by either an increase in Ca\(^{2+}\)/H\(^+\), Na\(^+\), or Cl\(^-\) permeability or a decrease in K\(^+\) permeability of the sarcolemma.

Vasoconstrictor-induced membrane depolarization is often attributed to increased inward current. Inward Cl\(^-\) currents (due to Cl\(^-\) efflux) are enhanced by \(\alpha\)-adrenergic stimulation in rabbit portal vein myocytes (13), by endothelin-1 or angiotensin II in rat pulmonary artery myocytes (20, 45, 46), and by endothelin-1 or vasopressin in A7r5 cells (56). Furthermore, the stimulation of Cl\(^-\) efflux has been implicated in the vasoconstrictor effects of endothelin-1 in rabbit basilar artery (10) and norepinephrine in rat resistance arteries (33) and aorta (32). There also is abundant evidence that vasoconstrictor hormones, including AVP, may enhance inward currents via stimulation of nonselective cation channel activity (Ca\(^{2+}\) and/or Na\(^+\) influx) in vascular smooth muscle cells (for reviews, see Refs. 34, 47, 54), including A7r5 cells (26, 29, 31, 37, 58). In most cases these effects have been evaluated using agonist concentrations that are orders of magnitude higher than would be found in the systemic circulation under physiological conditions.

Depolarization due to activation of inward currents (e.g., via Cl\(^-\) or nonselective cation channel activation) would be associated with a decrease in membrane resistance. In contrast, inhibition of K\(^+\) currents would favor an increase in membrane resistance. It is noteworthy that we have observed a net increase in membrane resistance in the response to 100 pM AVP in the present study. This finding is consistent with our hypothesis that inhibition of K\(_v\) currents is the primary mechanism for membrane depolarization and stimulation of action potential firing by physiological concentrations of AVP in A7r5 cells.

There are reports that other vasoconstrictor agonists inhibit K\(^+\) currents in vascular smooth muscle cells. For example, several earlier studies suggested that endothelin-1 inhibits K\(_v\),
channels in arterial myocytes (2, 36, 46, 51, 52). The contribution of this effect to endothelin-1-induced membrane depolarization is not clear, however. In rabbit pial arteriolar myocytes exposed to varying concentrations of endothelin-1, membrane depolarization was associated with a decrease in membrane resistance (EC50 = 100 pM for both depolarization and decreasing membrane resistance; Ref. 19), suggesting that inhibition of Kv channels was not the predominant depolarizing mechanism. Angiotensin II (100 nM) has been reported to decrease Kv currents in rabbit portal vein myocytes (8) and rat mesenteric arterial myocytes (24) by a PKC-dependent mechanism, although the contributions of this mechanism to membrane depolarization or Ca2+ signaling at physiological concentrations of angiotensin II have not been examined.

Inhibition of outward K+ currents would suffice to depolarize the membrane, but in addition it also may serve to sensitize the cells to depolarization by small increases in inward current. According to Ohm’s law, voltage is proportional to the product of current and resistance. Therefore, an increase in resistance would enable a small current to produce a larger change in

Fig. 6. Effects of KCNQ channel blockers/activators on A7r5 cell excitability. A: mean time course for inhibition of Ikv by 10 μM linopirdine was measured as described for 100 pM AVP in Fig. 4E (n = 3). AVP (100 pM) was added to the bath after 15-min treatment with linopirdine. B: I-V curves (after leak subtraction; mean of 3) recorded before, during 10 μM linopirdine treatment, and after 5-min exposure to 100 pM AVP in the continued presence of linopirdine (time points indicated by a, b, and c, respectively, in A). C: representative trace of membrane potential recorded in current-clamp mode showing stimulation of AP generation by 10 μM linopirdine in a single A7r5 cell. D: stimulation of Ca2+ spiking activity by 5 μM linopirdine in a population of A7r5 cells (representative of 4 similar experiments with concentrations of linopirdine between 1 and 10 μM). E: AVP-induced Ca2+ spiking activity was transiently reversed by application of 10 μM flupirtine (representative of 3 similar experiments).

Fig. 7. Expression of KCNQ isoforms in A7r5 cells and adult rat aorta. Total RNA prepared from A7r5 cells (A7), adult rat thoracic aorta (Ao), or adult rat brain as a positive control (+) was reverse transcribed and subjected to PCR using primers specific for KCNQ1 through KCNQ5. Molecular weight marker (M) is a 100-bp ladder; 500 bp is indicated at left. Expected sizes of reaction products are KCNQ1, 453 bp; KCNQ2, 372 bp; KCNQ3, 424 bp; KCNQ4, 495 bp; and KCNQ5, 240 bp. Products were confirmed by DNA sequencing.
to be active in unstimulated cells, where resting \(\text{Ca}^{2+} \) of KCa channels would depolarize the membrane under these conditions. Furthermore, we have found that treatment of A7r5 cells with 100 nM iberiotoxin, a specific inhibitor of BKCa channels, did not inhibit the AVP-sensitive K+ current (Fig. 5A) and did not induce depolarization of membrane potential or trigger Ca2+ spiking. On the other hand, KCa channels may be activated by Ca2+ and/or voltage during the course of the action potential and therefore may play a role in the repolarization or afterhyperpolarization phases of the action potential. KAATP channels are inhibited by normal cytosolic ATP concentrations and therefore also are expected to be minimally active in healthy unstimulated cells (38). A study by Dumont and Lamontagne (12) found no effect of glibenclamide, a KAATP channel blocker, on AVP-induced contraction, and glibenclamide by itself did not induce contraction of unstimulated aortic rings. We also found no effect of glibenclamide on Ca2+ spiking in A7r5 cells but observed a small inhibition of K+ currents at positive membrane potentials (Fig. 5B). Finally, the current-voltage profile of K5 is not consistent with the currents that we observed to be inhibited by AVP, which are outwardly rectifying.

Although often used as a selective K+ channel blocker, 1 mM 4-AP was not an effective inhibitor of K+ currents in A7r5 cells (Fig. 5, C and D). The effects of 4-AP on native vascular smooth muscle K+ currents are highly variable, with aortic myocytes being particularly insensitive (9, 55). Although higher concentrations of 4-AP have been tested in several vascular myocyte preparations (9), 5 mM 4-AP has been reported to have nonspecific effects attributed to changes in cytosolic pH when perforated-patch recording techniques are used (41).

Correolide, a selective Kvl family inhibitor (15, 21), significantly inhibited K+ currents in the present study but was ineffective in stimulation of Ca2+ spiking in A7r5 cells. The reasons for this apparent discrepancy are not immediately clear. Inhibition of IKv by 1 μM correolide was very gradual. About 50% inhibition of IKv was achieved only after 20–30 min, as observed for native rabbit pial arteriolar K+ currents (7). The relatively slow inhibition of IKv by correolide in A7r5 cells may have prevented the Ca2+ spiking response from developing, because of inactivation of L-type Ca2+ channels or other time-dependent adaptive responses of the cells. It also is possible that correolide has nonspecific effects that interfere with the Ca2+ spiking response.

Despite its partial inhibition by correolide, other pharmacological characteristics of the AVP-sensitive K+ current in A7r5 cells (sensitivity to 100 μM Ba2+, insensitivity to 4-AP) do not fit the expected properties of Kvl family channels. Ba2+...
sensitive, 4-AP-insensitive K⁺ channels have been implicated in the control of membrane potential and vasoconstriction in rabbit renal arcuate arteries (42). In primary rat aortic smooth muscle cells in culture (23) and guinea pig mesenteric artery myocytes in situ (22), Ba²⁺ (0.5–1.0 mM) induced significant membrane depolarization, increased membrane resistance, and induced repetitive action potential generation. These effects have been attributed to inhibition of K⁺ conductance, but the identities of the targeted channels have remained elusive.

The Ba²⁺ sensitivity, along with the electrophysiological characteristics (kinetics and voltage-dependence of activation, absence of time-dependent inactivation) of the A7r5 K⁺ current are similar to what has been described for the Kv7 family (KCNQ family) of voltage-gated K⁺ channels (43). These channels are among the most recently identified mammalian K⁺ channels and are thought to function in excitable cells to maintain a negative resting membrane potential. These channels have not historically been considered among the cohort of vascular ion channels, but recently, KCNQ channels were found to be expressed in murine portal vein (KCNQ1; Ref. 39), and functional vasoconstrictor effects of KCNQ channel blockers were demonstrated in rat and murine pulmonary arteries (28) and murine portal vein (60). No previous studies have demonstrated regulation of these channels by vasoconstrictor hormones.

Inhibition of K⁺ currents and vasoconstrictor actions of the selective KCNQ channel blockers linopirdine and XE991 have been the basis for postulating a functional role for KCNQ channels in rat and murine pulmonary arteries and portal vein (28, 39, 60). We have found that these same agents inhibit the AVP-sensitive K⁺ current in A7r5 cells at concentrations that selectively block KCNQ currents in other cells and that linopirdine mimics AVP in the stimulation of action potential generation and Ca²⁺ spiking. We also found that the KCNQ channel activator flupirtine has the opposite effect (increasing K⁺ current and suppressing AVP-stimulated Ca²⁺ spiking). KCNQ5 expression in A7r5 cells (and freshly isolated rat aortic smooth muscle cells) was confirmed by RT-PCR (whereas KCNQ1–4 were undetectable), and RNA interference targeted to KCNQ5 significantly decreased I_K⁺. On the basis of these observations, we conclude that KCNQ5 channel inhibition mediates the stimulation of Ca²⁺ spiking via physiological concentrations of AVP in A7r5 cells.

KCNQ5 expression has been demonstrated in a number of brain regions as well as in sympathetic ganglia and skeletal muscle (35, 48), but this is the first demonstration of its expression or function in vascular smooth muscle cells. KCNQ5 channel function has been measured using expression systems in which KCNQ5 overexpression yields currents with characteristics reminiscent of neuronal M currents and regulation by M1 muscarinic receptor activation (48). These properties are similar to the electrophysiological characteristics of K⁺ currents in A7r5 cells and their regulation by activation of Vₛ,₁a vasopressin receptors. The signal transduction pathways involved in regulation of neuronal KCNQ5 currents by G protein-coupled receptor activation are not fully understood, but both hydrolysis of phosphatidylinositol 4,5-bisphosphate and activation of PKC have been implicated (11).

Is there any relationship between regulation of KCNQ5 and Kv1.2 channels by AVP? A role for Kv1.2 channels in A7r5 cells was suggested by our previous finding that AVP-induced Ca²⁺ spiking was dependent on PYK2 activation and the associated tyrosine phosphorylation of the Kv1.2 channel protein (3). M1 muscarinic acetylcholine receptor activation can also induce PYK2-dependent tyrosine phosphorylation of Kv1.2 channels and suppression of their activity (16, 25). These findings suggest that M1 receptor activation can initiate the same signaling sequence that we previously implicated for AVP-stimulated Ca²⁺ spiking in A7r5 cells. As noted above, KCNQ5-mediated M currents also were suppressed in response

Fig. 9. PKC dependence of Kᵥ currents. A: I-V curves of mean currents recorded at the end of voltage pulses in control and after application of 10 nM PMA for 10 min. After leak subtraction, currents were normalized to the maximal control current measured at +36 mV, and data are presented as means ± SE (n = 3). B: I-V curves of mean currents recorded at the end of voltage pulses before (control) and after AVP application for 10 min. Currents were normalized to the maximal control current measured at 36 mV, and data are presented as means ± SE (n = 3). C: a similar series of experiments was conducted in cells pretreated for 1 h with 250 nM calphostin C. Results are displayed as described in B (n = 3). All measurements for A–C were made in the presence of 100 μM GdCl₃ in the external solution.
to M1 receptor activation (48). Both KCNQ channels and Kv1.2 channels are widely distributed in neural tissues (11, 50). If these channels coexist in neurons, their regulation by M1 receptor activation may represent a coordinated response in the stimulation of neuronal excitability. Although the relationship between KCNQ5 and Kv1.2 regulation in A7r5 cells is not completely clear, we may speculate that they are both involved in the regulation of excitability in vascular smooth muscle cells.

In summary, at physiological vasoconstrictor concentrations, AVP stimulates action potential generation and Ca2+ spiking in A7r5 cells via PKC-dependent inhibition of K+ currents. The latter have pharmacological and electrophysiological attributes of KCNQ5 channel currents, and the current amplitudes are decreased by knocking down KCNQ5 expression. Future studies are needed to examine the hypothesis that KCNQ5 channels are mediators in the physiological vasoconstriction effects of vasopressin and potential targets for therapeutic intervention in cardiovascular diseases.

ACKNOWLEDGMENTS

We gratefully acknowledge the technical assistance of Chris Hill. We also thank Merck Research Laboratories for providing corrode for use in these studies.

Present address of C. J. Moran: William Beaumont Hospital, Royal Oak, MI 48073.

GRANTS

This work was supported by the Eugene J. and Elsie E. Weyler Endowment for Clinical Cardiology Research, the John and Marian Falk Trust for Medical Research, and National Heart, Lung, and Blood Institute Grants R01 HL-60164 and R01 HL-070670 (to K. L. Byron).

REFERENCES

AVP-INDUCED Kv CHANNEL REGULATION IN A7r5 CELLS

