American Journal of Physiology-
Heart and Circulatory Physiology

Scope of Journal
The American Journal of
Physiology-Heart and Circulatory
Physiology brings you the most
distinguished reporting of leading-edge
findings in the field.

AJP-Heart and Circulatory Physiology
covers all areas of the cardiovascular
physiology, including:

- experimental and theoretical studies
 of cardiovascular function from the
 whole organism to cellular,
 subcellular, and molecular levels
- critical new insights into the
 mechanisms that determine the
 performance of the normal and
 abnormal heart and circulation
- timely editorial reviews

Authors are required to submit papers
online at www.apscentral.org.

A Few HOT Articles

Biology of bone marrow-derived endothelial
cell precursors
Gina C. Schatteman, Martine Dunnwald, Chunhua Jiao

Antiatherogenic potential of red wine: clinician
update
Paul E. Szmitko, Subodh Verma
Am. J. Physiol. Heart Circ. Physiol. May 01, 2005;
288: 2023-2030

Endothelial dysfunction: a multifaceted
disorder (The Wiggers Award Lecture)
Michel Féélétou, Paul M. Vanhoutte
Am. J. Physiol. Heart Circ. Physiol. Sep 01, 2006;
291: 985-1002.

Regulation of a voltage-sensitive release
mechanism by Ca2+-calmodulin-dependent
kinase in cardiac myocytes
Jiequan Zhu, Gregory R. Ferrier
Am. J. Physiol. Heart Circ. Physiol. Nov 01, 2000;
279: 2104-2115

Physiological time-series analysis using
approximate entropy and sample entropy
Joshua S. Richman, J. Randall Moorman
Am. J. Physiol. Heart Circ. Physiol. Jun 01, 2000;
278: 2039-2049

Reader & Author
Benefits
- Fully searchable text, including
 PubMed
- Rich color and sharp resolution of
 figures
- Editor’s Home Page at
 www.the-aps.org/publications/ajpheart
- FREE access to the extensive
 collection of back issues available
 online 12 months after publication
- FREE e-mail notification of new
 content as it becomes available
- Manuscripts online within days of
 acceptance
- Perpetual/Electronic Archiving of
 the LOCKSS and CLOCKSS
 systems preserves the electronic
 content of all APS journals.

To Start your Subscription
or Submit your Manuscript
E-mail: subscriptions@the-aps.org, Call 301-634-7180,
Fax 301-634-7418, or mail to The American Physiological Society,
9650 Rockville Pike, Bethesda, MD 20814-3991 (USA)
Under the NIH Public Access Policy, NIH is asking its funded investigators to voluntarily submit to PubMed Central (PMC) the author's final manuscript of articles resulting from research supported in whole or in part with direct costs from NIH. According to the NIH, this policy applies only to manuscripts accepted for publication on or after May 2, 2005.

If you choose to submit your accepted manuscript to PMC, you will be asked to indicate when that manuscript should be made available to the public. As copyright holder of your article, the APS has the sole right to publish or disseminate it. However, the APS grants you permission to allow public release of your manuscript through PMC 12 months after publication in the print version of an APS journal.

This period of time is consistent with our existing policy to make all content publicly available through HighWire Press 12 months after print publication. NIH will be able to determine when 12 months have elapsed because APS sends NIH electronic feeds of the article metadata upon publication in a journal issue. Therefore, you can submit your accepted manuscript to PMC at the time of acceptance to an APS journal, and will not have to calculate or track time elapsed from publication.

NIH intends to use the PMC database of manuscripts for portfolio management; to create a permanent archive of articles based upon NIH-funded research; and to give the public access to research publications. In announcing this policy, NIH officials underscored that it is voluntary and there will be no sanctions of any kind against authors who do not submit their manuscripts. If you have any questions with respect to the NIH Public Access Policy and the publication of your article in an APS journal, please contact Margaret Reich at mreich@the-aps.org.
The American Physiological Society
Professional Skills Training Courses

Writing & Reviewing for Scientific Journals
and
Making Scientific Presentations: Critical First Skills

January 17-20, 2008
Disney’s Contemporary Resort, Orlando, FL

Application and Payment Deadline: October 1, 2007

Writing & Reviewing for Scientific Journals

Content Focus for 2008:
Cardiovascular, Exercise, Neurophysiology, Renal, Water & Electrolyte Physiology

Who can apply...?
New authors with draft manuscripts

Do you want to...?
- Improve your skills at writing and submitting manuscripts?
- Learn how to better respond to reviewer criticisms?
- Know how to select a journal for submission?
- Learn how to be a good reviewer?
- Discover how diversity issues may influence how you write and review manuscripts?
- Learn about resources that can further develop your writing and reviewing skills?

Making Scientific Presentations: Critical First Skills

Content Focus for 2008:
All areas of physiology

Who can apply...?
New poster presentation authors

Do you want to...?
- Improve your skills at introducing yourself to colleagues, faculty members, chairs?
- Learn how to write a better meeting abstract?
- Know how to write a great poster?
- Learn what constitutes an effective poster design?
- Learn how to present your poster to different types of audiences?
- Discover how diversity issues may influence your presentation skills?
- Learn about resources that can further develop your presentation skills?

Cost: $700 Registration
(covers hotel, conference meals, meeting materials)
Transportation to and from Orlando

For more information, see:
CALL FOR PAPERS

Sex Steroids and Gender in Cardiovascular-Renal Physiology and Pathophysiology

Deadline for Submission: October 31, 2007

The American Journal of Physiology-Heart and Circulatory Physiology is soliciting submission of original research papers on Sex Steroids and Gender in Cardiovascular-Renal Physiology and Pathophysiology, the roles that both male and female sex steroids and gender play in mediating or protecting against cardiovascular-renal disease and hypertension are controversial. In the past, androgens have been thought to promote cardiovascular and renal disease since men experience myocardial dysfunction and hypertension at an earlier age than women and progress to end stage renal failure at a more rapid rate than women, even for similar blood pressures. In contrast, estrogens have been thought to be cardiovascular protective. However, with the latest studies showing the lack of cardiovascular protection from hormone replacement therapy in postmenopausal women (the HERS and WHI clinical trials), the promotion of inflammatory processes by estrogens, the reduction in androgen levels in chronic disease states and the protection against inflammation by androgens, it is obvious previous concepts regarding the role sex steroids play in cardiovascular and renal physiology and pathophysiology need to be re-examined. Authors are especially encouraged to submit papers addressing the role of sex steroids in oxidative and nitrosative stress, endothelial function and dysfunction, impaired cardiac performance, inflammatory mechanisms, target organ damage, metabolic syndrome, hypertension, and diabetes.

It is requested that contributions be submitted by October 31, 2007; for authors who submit by this date, every effort will be made to obtain reviews within two weeks of submission. Responding authors should indicate in their cover letters that the submitted manuscript is in response to this Call for Papers. If published, the article will be highlighted together with other articles appearing in response to this Call. Guidelines for authors can be found on the AJP Heart and Circulatory Physiology website. If you have any questions related to this Call, please, contact Patricia A. Meravy, Managing Editor (Tel: 914-594-4938; E-mail: patricia_meravy@nymc.edu), or Dr. Alberto Nasjletti, Editor-in-Chief (Tel: 914-594-4137; E-mail: alberto_nasjletti@nymc.edu).
Endothelial Pathobiology Program
University of Texas Medical Branch, Galveston

The Department of Pathology, University of Texas Medical Branch, Galveston, is seeking applications for a full professor to develop and lead the newly established Endothelial Pathobiology Program.

The Endothelial Pathobiology Program will include at least eight full-time faculty members by September 2010. Members of the Program will interact with University scientists whose research is focused on infectious, immunological, metabolic, nutritional, toxicological, gestational, or endocrine diseases in which the endothelium of the microvasculature plays a key role in pathogenesis.

The successful applicant will have an extensive body of influential scientific publications, experience in mentoring successful research careers, an established international reputation in the field of endothelial cell biology or pathobiology, and an active research program which employs cutting-edge technologies and physiologically relevant models of microvasculature dysfunction.

Experience in developing research priorities, defining and pursuing research opportunities, and building collaborative research initiatives is essential, as is familiarity with research-based postgraduate and student research programs.

Applicants should send a letter of interest, statement of current and future research objectives, and

curriculum vitae to:

David H. Walker, M.D.
University of Texas Medical Branch
301 University Blvd., Keiller Bldg.
Galveston, TX 77555-609 USA
Email: dwalker@utmb.edu

The Search Committee will begin evaluating applications July 15, 2007 and will continue until a suitable candidate is identified.

The University is an Equal Opportunity, affirmative action employer. All qualified applicants are encouraged to apply.
Abbreviations

Listed below are abbreviations and their definitions. These may be used without definition in the APS Journals. See Information for Authors (www.the-aps.org/publications/journals/pub_quick.htm) for other abbreviations, symbols, and terminology.

ACCh acetylcholine
ACTH adrenocorticotropic hormone
ADP (CDP, GDP, IDP, UDP, XDP, TDP) adenosine 5'-diphosphate (and similarly for cytidine, guanosine, thymidine)
AM acetoxyethyl ester
AMP, etc. adenosine 5'-monophosphate, etc.
ANG I, etc. angiotensin I, etc.
ANOVA analysis of variance
ATP, etc. adenosine 5'-triphosphate, etc.
ATPase, etc. adenosine 5'-triphosphatase, etc.
avergine vasopressin
BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
BCECF 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein
bp base pair(s)
BSA bovine serum albumin
CaM calmodulin
CaM kinase Ca2+ /calmodulin-dependent kinase
CaMKK CaMK kinase
CAMP, etc. adenosine 3',5'-cyclic monophosphate, etc.
CCCP carbonyl cyanide m-chlorophenylhydrazone
cDNA complementary DNA
CFTR cystic fibrosis transmembrane conductance regulator
cGRP calcitonin gene-related peptide
CoA coenzyme A (also, acyl-CoA)
CCK cholecystokinin
CGRP calcitonin gene-related peptide
CoA coenzyme A (also, acyl-CoA)
CRF corticotropin-releasing factor
DKAVP desmopressin
DAAVP dopamine
DEAE diethylaminoethyl
DIDS 4,4'-diisothiocyanato stilbene-2,2'-disulfonic acid
DMEM Dulbecco’s modified Eagle’s medium
DMO dimethyl sulfoxide
dNA deoxyribonucleic acid
DNase deoxyribonuclease
dO deoxyribonucotide
dOCA deoxyribonucleotides
ERK extracellular signal-regulated kinase
ECoM concentration giving half-maximal response
eCG cardiographic
ECL extracellular matrix
eDTA ethylene diaminetetraacetic acid
eEF eukaryotic elongation factor
eGFP TSH thyrotropin releasing hormone
EC50 concentration giving half-maximal response
ECG electrocardiogram
eECM extracellular matrix
eEDTA ethylenediaminetetraacetic acid
eEGF epidermal growth factor
eGF globin
EGTA ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid
EGF epidermal growth factor
EGTA ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid
Elisa enzyme-linked immunosorbent assay
EMS electrophoretic mobility shift assay
ERK extracellular signal-regulated kinase
FAF flavin adenine dinucleotide
FADH2 reduced flavin adenine dinucleotide
FBS fetal bovine/calf serum
FCPC fetal calf placental cytochrome c peroxidase
FGF fibroblast growth factor
FITC fluorescein isothiocyanate
FISH foetal stimulating hormone
GABA γ-aminobutyric acid (also, “GABAergic”)
GAP growth-associated protein
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GC-MS gas chromatography-mass spectrometry
GDPβS guanosine 5'-O-(β-diphosphate)
GSH, GSSG reduced and oxidized glutathione
GTPγS guanosine 5'-O-(3-thiotriphosphate)
GSK glycogen synthase kinase
Hb hemoglobin
HbSS Haem’s balanced salt solution
Hct hematocrit
HDL high-density lipoprotein
HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
HETE hydroxyeicosatetraenoic acid
HPLC high-performance liquid chromatography
5-HT 5-hydroxytryptamine (serotonin)
IBMX 3-isobutyl-1-methylxanthine
ICAM intercellular adhesion molecule
IFN interferon
IGF-I, II insulin-like growth factor I and II
IgG, etc. immunoglobulin G, etc.
IIK IleI kinase
IL-1 interleukin-1 (IL-2, etc.)