Metabolic acidosis decreases fetal myocardial isovolumic velocities in a chronic sheep model of increased placental vascular resistance

Ganesh Acharya,1,2 Juha Räsänen,3 Kaarin Mäkikallio,3 Tiina Erkino,4 Tomi Kavasmma,4 Mervi Haapam,3 Luc Mertens,5 and James C. Huhta1

1Department of Pediatrics, University of South Florida College of Medicine and All Children’s Hospital, Children’s Research Institute, St. Petersburg, Florida; 2Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tromsø, and University Hospital of Northern Norway, Tromsø, Norway; Departments of 3Obstetrics and Gynecology and 4Anesthesiology, University Hospital of Oulu, Oulu, Finland; and 5Department of Pediatric Cardiology, University Hospital Leuven, Leuven, Belgium

Submitted 24 April 2007; accepted in final form 12 November 2007

Acharya G, Räsänen J, Mäkikallio K, Erkino T, Kavasmma T, Haapam M, Mertens L, Huhta JC. Metabolic acidosis decreases fetal myocardial isovolumic velocities in a chronic sheep model of increased placental vascular resistance. Am J Physiol Heart Circ Physiol 294: H498–H504, 2008. First published November 16, 2007; doi:10.1152/ajpheart.00492.2007.—We hypothesized that acute metabolic acidosis decreases fetal myocardial motion in a chronic sheep model of increased placental vascular resistance (Rua). Eleven ewes and fetuses were instrumented at 118–122 days of gestation. After 5 days of recovery and 24 h of placental embolization to increase Rua, longitudinal myocardial velocities of the right and left ventricles and interventricular septum (IVS) were assessed at the level of the atrioventricular valve annuli via tissue Doppler imaging (TDI). Ventricular inflow (E and A waves) and outflow velocities were obtained, and cardiac outputs were calculated. All measurements were performed at baseline and during fetal acidosis caused by epidural anesthesia-induced maternal hypotension, which decreased uterine artery volume blood flow, fetal oxygenation, arterial pH, and base excess and increased lactate. Compared with baseline, the peak isovolumic myocardial contraction and relaxation velocities of the IVS decreased during metabolic acidosis. The proportion of isovolumic contraction time of the cardiac cycle increased but the isovolumic relaxation and ejection time proportions and the TDI Tei index did not change. The E-to-E’ ratio for both ventricles was higher during metabolic acidosis than at baseline. During metabolic acidosis, right and left ventricular cardiac outputs remained unchanged compared with baseline. In sheep fetuses with increased Rua and acute metabolic acidosis, global cardiac function was preserved. However, acute metabolic acidosis impaired myocardial contractility during the isovolumic phase and relaxation during the isovolumic and early filling phases of the cardiac cycle.

cardiac function; fetal echocardiography; tissue Doppler

In response to hypoxemia, fetuses generally redistribute more blood toward the myocardium, brain, and adrenal glands at the expense of the lower body and viscera (3, 22). The fetal heart is known to have a remarkable ability to withstand hypoxia (10, 30), but progressive hypoxia and acidosis may decrease blood supply to the heart (6) and alter myocardial energy metabolism (18, 40). However, despite reduced myocardial contractility, global cardiac function is preserved during moderate acidemia (26). Echocardiography has been applied to assess fetal cardiac function noninvasively in a variety of clinical conditions, such as intrauterine growth restriction (29), hydrops (17), congenital heart disease (38), and twin-twin transfusion syndrome (36). Recently, tissue Doppler imaging (TDI) of myocardial motion has been introduced in clinical practice as a promising new technique in the assessment of fetal heart function (2, 8, 11, 15, 32, 34).

In human pregnancies, placental insufficiency with increased placental vascular resistance (Rua) can lead to fetal metabolic acidosis and death. Our experiments in a chronic sheep model of increased Rua were designed to test the hypothesis that acute metabolic acidosis decreases fetal myocardial motion. We asked the following questions. 1) How does the fetal myocardium tolerate metabolic acidosis? 2) Does acute metabolic acidosis with increased Rua affect longitudinal myocardial wall motion and TDI parameters describing cardiac function?

METHODS

Measurements were made on 11 Finnish pregnant sheep (gestational age 123–127 days, full-term 145 days) that were part of a research protocol investigating fetomaternal cardiovascular function in a model of increased Rua. All experiments were performed in accordance with the guidelines of the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (1986) and in compliance with European Union Directive 86/609/EEC (1997). The research protocol was approved by the Animal Care and Use Committee of the University of Oulu.

Surgical procedure and instrumentation. After they were fasted overnight, the sheep were premedicated intramuscularly with ketamine (2 mg/kg) and midazolam (0.2 mg/kg). Venous access was obtained by cannulation of an auricular vein. General anesthesia was induced with propofol (4–7 mg/kg iv). Anesthesia was maintained with isoflurane (1–2.5%) in an oxygen-air mixture delivered via an endotracheal tube; intravenous boluses of fentanyl were administered as required. A catheter was inserted into the ewe’s external left jugular vein to serve as a permanent intravenous line, and an auricular artery was cannulated for blood pressure (BP) and heart rate monitoring. Mechanical ventilation was maintained throughout the surgical procedure.

A midline laparotomy was performed, and a 6-mm transit-time ultrasonic flow probe (Transonic Systems, Ithaca, NY) was placed around the uterine artery supplying the pregnant uterine horn. There-
Table 1. Results of arterial blood gas analysis and acid-base status of sheep fetuses before placental embolization, at baseline, and during metabolic acidosis

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>Arterial PO₂, mmHg</th>
<th>Arterial PCO₂, mmHg</th>
<th>BE, mmol/l</th>
<th>Lactate, mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preembolization</td>
<td>7.32±0.04</td>
<td>23.5±3.5</td>
<td>49.2±5.0</td>
<td>2.0±2.7</td>
<td>1.6±0.6</td>
</tr>
<tr>
<td>Baseline</td>
<td>7.27±0.07</td>
<td>19.6±4.3</td>
<td>55.7±6.9</td>
<td>2.8±2.86</td>
<td>3.1±1.6</td>
</tr>
<tr>
<td>Acidosis</td>
<td>7.04±0.13*</td>
<td>14.4±4.8</td>
<td>72.1±16†</td>
<td>11.0±4.14*</td>
<td>9.8±2.1*</td>
</tr>
</tbody>
</table>

Values are means ± SD (n = 11). BE, base excess. *P < 0.0001; †P = 0.002; ‡P = 0.004 vs. baseline.
Tissue Doppler traces were analyzed offline using EchoPac PC software (version 6.0.0, GE Medical Systems). Maximal myocardial velocities were measured during isovolumic relaxation (IVRV), early ventricular filling (E'), atrial contraction (A'), isovolumic contraction (IVCV), and ventricular systole (S'). The slopes of isovolumic myocardial acceleration and deceleration were calculated by dividing the peak IVCV and IVRV by the time intervals from the onset to the peak of these velocity waveforms, respectively. Ventricular and septal isovolumic contraction time (IVCT), isovolumic relaxation time (IVRT), ejection time (ET), and the total duration of the cardiac cycle were measured using pulsed-wave tissue Doppler traces (Fig. 1). The TDI Tei index (41) was calculated by dividing the sum of IVCT and IVRT by ET.

Fetal arterial blood samples were analyzed for acid-base status (corrected for 39°C) using an i-Stat 1 analyzer (i-Stat, East Windsor, NJ). At the end of the experiment, the animals were euthanized with a lethal dose of pentobarbital sodium.

Data were analyzed using Statistical Software for Social Sciences for Windows version 14.0 (SPSS, Chicago, IL). For continuous parametric variables, the paired t-test was used to examine differences between baseline and acidosis. Correlations were tested using the Pearson correlation coefficient. Statistical significance was set at \(P \leq 0.05 \).

RESULTS

The mean weight of the ewes \((n = 11)\) was 56 (range 49–61) kg. The mean gestational age on the day of the experiment was 125 (range 123–127) days, and the mean fetal weight was 2,190 (range 1,220–2,675) g. During hypotension, maternal MAP (87 ± 8 vs. 65 ± 14 mmHg, \(P < 0.0001 \)) and \(Q_{\text{ua}} (472 ± 223 \text{ vs. } 223 ± 141 \text{ ml/min, } P = 0.004) \) were reduced compared with baseline. \(Q_{\text{ua}} (89 ± 32 \text{ vs. } 58 ± 39 \text{ ml kg}^{-1} \text{min}^{-1}, P = 0.01) \) decreased, while the fetal heart rate (151 ± 35 vs. 158 ± 25 beats/min, \(P = 0.533 \)), MAP (50 ± 8 vs. 47 ± 7 mmHg, \(P = 0.245 \)), and CVP (14 ± 6 vs. 15 ± 7 mmHg, \(P = 0.339 \)) remained unchanged. During maternal hypotension, \(R_{\text{ua}} (0.291 ± 0.102 \text{ vs. } 0.402 ± 0.114 \text{ mmHg ml}^{-1} \text{min}^{-1}, P = 0.007) \) was increased compared with baseline. The results of fetal arterial blood gas analysis and acid-base status are presented in Table 1.

It was possible to obtain good-quality images of pulsed-wave tissue Doppler recordings of the longitudinal myocardial velocities of the RV, LV, and IVS in all cases by transabdominal echocardiography. Typically, the TDI waveform recordings showed IVCV, S', IVRV, E', and A' waves (Fig. 1). However, in some fetuses, we observed monophasic myocardial relaxation velocity (fused E' and A' waves) during tachycardia (Fig. 2A) and a prolonged period of myocardial quiescence between the early relaxation phase and the atrial contraction phase of diastole (widely separated E' and A' waves) during bradycardia (Fig. 2B).

Fetal myocardial TDI parameters obtained from the LV, RV, and IVS at the level of the atrioventricular annuli during baseline and metabolic acidosis are shown in Tables 2, Tables 3, and Tables 4, respectively. The TDI parameters were not significantly different between the two ventricles. Compared with baseline, the peak IVCV, IVRV, and the slopes of isovolumic myocardial acceleration and deceleration of the ventricles and IVS decreased significantly during fetal acidosis (Fig. 3). The peak early relaxation (E') wave velocity of both ventricles and the peak systolic (S') velocity of the IVS also decreased significantly during acidosis. During fetal acidosis, the proportion of IVCT of the cardiac cycle (IVCCT%) increased but the Tei index did not change significantly from the baseline value for both ventricles as well as the IVS. The E-to-E' ratio (E/E') for both ventricles was significantly higher during acidosis than at baseline.

The peak IVCV, IVRV, and the slopes of isovolumic myocardial acceleration and deceleration of the LV, RV, and IVS correlated significantly with fetal pH, except the RV peak...
The fetal LV (412 ± 178 vs. 449 ± 199 ml/min, P = 0.511), RV (584 ± 283 vs. 588 ± 300 ml/min, P = 0.971), and LV + RV (996 ± 454 vs. 1,037 ± 449 ml/min, P = 0.791) cardiac outputs during acidosis were comparable with baseline values.

DISCUSSION

With our experimental animal model, we have tried to replicate the pathophysiological situation in human placental insufficiency, in which placental dysfunction can lead to fetal acidosis and death. Fetal hypoxia and acidosis can be induced by maternal hypooxygenation (35) or a reduction in Qua (19) with fetal pH, but the RV Tei index did not (Table 5). When we examined the relationships between the increase in R_{ma} from baseline to the acidosis phase (ΔR_{ma}) and TDI parameters, only ΔIVS IVCT% ($r = 0.65$, $P < 0.031$) and ΔIVS Tei index ($r = 0.64$, $P < 0.034$) showed significant correlations.

The fetal LV and RV slopes of isovolumic myocardial deceleration were not significantly different during acidosis induced by a reduction of Q_{ma}. We used TDI-derived longitudinal myocardial velocities and cardiac cycle time intervals to infer information on fetal cardiac function.

Myocardial contractility was assessed by the slope of isovolumic myocardial acceleration, which is independent of cardiac loading conditions (42, 43). Other indexes describing cardiac systolic function included peak IVCV, IVCT%, and peak S' wave velocity. Preejection indexes are less influenced by afterload than ejection phase indexes (27). The slope of isovolumic myocardial deceleration, peak IVRV, IVRT%, and peak E' and A' wave velocities were used to assess myocardial relaxation and diastolic properties. IVRT and E' wave velocity are known to be affected by cardiac loading conditions (21). Global cardiac function was evaluated by TDI Tei index and ventricular cardiac outputs. In the present study, mean R_{ma} was ~1.4-fold higher during acidosis than at baseline. This can lead to an increase in cardiac afterload. However, when we investigated the relationships between ΔR_{ma} and TDI parameters, only septal ICT% and Tei index demonstrated significant correlations with the increase in R_{ma}.

We were able to detect a decrease in the slope of isovolumic myocardial acceleration and peak IVCV and an increase in IVCT% during fetal acidosis. These findings suggest that metabolic acidosis decreases myocardial contractility. The slope of isovolumic myocardial acceleration and the other preejection indexes reflect the ability of the myocardium to generate pressure sufficient to overcome systemic diastolic pressure. These have been validated as noninvasive indexes of myocardial contractility in animal experiments (42, 45). A rise in placental vascular resistance can increase cardiac afterload, which may influence preejection and ejection indexes. On the other hand, fetal MAP did not change significantly during metabolic acidosis. In addition, experimental studies have shown that RV and LV slopes of isovolumic myocardial acceleration are not affected by loading conditions. In fact, it appears that ventricular peak S' wave velocity, which did not change significantly during metabolic acidosis in the present study, is the most sensitive index to increased afterload (43). Our observation of reduced myocardial contractility during fetal acidosis is consistent with the results of in vitro experiments demonstrating decreased isometric tension development in isolated fetal myocardial fibers within 10 min of profound hypoxia (40) and reduced myocardial contractility when LV function was assessed in vivo in sheep fetuses by end-systolic elastance using a conductance catheter during acidosis induced by placental embolization (26).

We observed that the waveform of myocardial lengthening velocity during isovolumic relaxation (IVRv) could be consistently recorded by pulsed TDI (Fig. 1). This velocity has not been previously described in the literature. During fetal acidosis, we found that the peak IVRV and the slope of isovolumic myocardial deceleration are reduced. Additionally, a reduction in E' wave velocity (an index of active ventricular relaxation) was noted, but no significant change in the A' wave velocity was observed. These findings suggest that metabolic acidosis can adversely affect the calcium- and energy-dependent active myocardial relaxation during the isovolumic phase and the early phase of diastole, but the ventricular expansion during atrial contraction is not significantly affected; i.e., the atrial contractility is preserved. This is consistent with the finding that, in coronary artery disease, A' wave velocity is significantly higher among patients with preserved LV ejection fraction (>50%) than in those with impaired ejection fraction (44). A change in the cardiac after-

Table 3. TDI parameters of fetal right ventricle at the level of the tricuspid valve annulus

<table>
<thead>
<tr>
<th></th>
<th>S', cm/s</th>
<th>E', cm/s</th>
<th>A', cm/s</th>
<th>IVCV, cm/s</th>
<th>IVRV, cm/s</th>
<th>Accel, cm/s²</th>
<th>Decel, cm/s²</th>
<th>E/E'</th>
<th>IVRT, %</th>
<th>IVCT, %</th>
<th>ET, %</th>
<th>Tei Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>9.5±2.0</td>
<td>7.1±1.0</td>
<td>11.2±3.0</td>
<td>5.5±1.7</td>
<td>4.0±0.8</td>
<td>596±170</td>
<td>335±74</td>
<td>5.48±1.09</td>
<td>14.2±5.7</td>
<td>7.6±3.1</td>
<td>38±6.6</td>
<td>0.57±0.15</td>
</tr>
<tr>
<td>Acidosis</td>
<td>8.5±2.3</td>
<td>5.7±1.4</td>
<td>11.5±2.4</td>
<td>4.1±1.5</td>
<td>2.9±0.7</td>
<td>290±106</td>
<td>206±61</td>
<td>7.07±1.41</td>
<td>15.9±2.6</td>
<td>10.3±3.6</td>
<td>38±6.0</td>
<td>0.70±0.16</td>
</tr>
<tr>
<td>P</td>
<td>0.173</td>
<td>0.008</td>
<td>0.728</td>
<td>0.013</td>
<td>0.003</td>
<td><0.0001</td>
<td>0.026</td>
<td>0.427</td>
<td>0.050</td>
<td>0.967</td>
<td>0.138</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SD.

Table 4. TDI parameters at the septal annulus

<table>
<thead>
<tr>
<th></th>
<th>S', cm/s</th>
<th>E', cm/s</th>
<th>A', cm/s</th>
<th>IVCV, cm/s</th>
<th>IVRV, cm/s</th>
<th>Accel, cm/s²</th>
<th>Decel, cm/s²</th>
<th>IVRT, %</th>
<th>IVCT, %</th>
<th>ET, %</th>
<th>Tei Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>8.1±2.4</td>
<td>5.2±1.0</td>
<td>8.5±2.4</td>
<td>4.8±1.4</td>
<td>4.0±1.1</td>
<td>523±170</td>
<td>372±128</td>
<td>12.1±4.8</td>
<td>7.4±2.6</td>
<td>37±6.5</td>
<td>0.54±0.13</td>
</tr>
<tr>
<td>Acidosis</td>
<td>6.3±1.0</td>
<td>4.2±1.9</td>
<td>8.4±2.2</td>
<td>3.5±1.3</td>
<td>2.8±0.6</td>
<td>284±88</td>
<td>259±71</td>
<td>11.9±2.4</td>
<td>9.9±3.8</td>
<td>38±4.8</td>
<td>0.57±0.11</td>
</tr>
<tr>
<td>P</td>
<td>0.031</td>
<td>0.120</td>
<td>0.714</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
<td>0.019</td>
<td>0.856</td>
<td>0.033</td>
<td>0.401</td>
<td>0.458</td>
</tr>
</tbody>
</table>

Values are means ± SD.
load can affect indexes describing myocardial relaxation and diastolic properties (25). However, IVRT%, which is known to be affected by changes in loading conditions, remained stable during metabolic acidosis, suggesting that our findings merely reflected the effects of metabolic acidosis. Glucose and lactate account for the majority of myocardial oxygen consumption in sheep fetuses (5), and significant metabolic acidosis leads to depletion of myocardial glycogen and ATP stores, which is reflected in the effects of metabolic acidosis. Glucose and lactate during metabolic acidosis, suggesting that our findings merely be affected by changes in loading conditions, remained stable.

The relatively high TDI Tei indexes in our fetuses at baseline may be explained by increased R_{a} and higher afterload following placental embolization. The TDI Tei index is shown to correlate with the Tei index obtained by pulsed-wave Doppler and M-mode echocardiography (9) but is affected by loading conditions (7). A previous study in human fetuses with heart failure (2) suggested that the TDI Tei index maybe a sensitive parameter in the assessment of RV function.

We observed no significant changes in fetal ventricular cardiac outputs or ventricular TDI Tei indexes during the experiments. In the absence of altered BPs, abnormal relaxation causes longer IVRT and an increase in Tei index values. However, inasmuch as the fetal aortic pressure and CVP during acidosis were not significantly different from baseline values in our study, it is unlikely that the elevated atrial pressure has masked a detectable rise in the Tei index during acidosis. This suggests that the global cardiac function is relatively well preserved during acute metabolic acidosis, consistent with studies in which the sheep fetuses maintained their cardiac output during hypoxemia (28) and acidosis (26). Human fetuses with clear evidence of placental insufficiency (absent or reversed umbilical artery diastolic blood flow) are also shown to have normal weight-indexed combined cardiac output (24). Even fetuses with increased serum troponin-T levels seem to have normal ventricular shortening fraction and ejection force and appear to maintain their cardiac output (29). This explains why signs of fetal congestive heart failure in intrauterine growth restriction tend to occur late in the disease process and subtle fetal cardiac dysfunction is difficult to detect using conventional echocardiography. Therefore, TDI of fetal myocardial motion could improve the early detection of impending heart failure.

E/E' of both ventricles was increased during fetal metabolic acidosis. In adults, mitral valve E/E' has been shown to reflect LV filling pressure (31, 33). In the present study, fetal CVP remained unchanged, suggesting that ventricular filling pressures did not change significantly. Thus an increase in E/E' was merely reflecting a depression in E' velocity during metabolic acidosis. E/E' of the LV correlated significantly with the severity of fetal acidosis. We propose that the fetal LV is more sensitive to the changes in oxygenation and acid-base status than the RV. In addition, despite the parallel arrangement of the fetal circulation, the afterload impedance faced by the RV may be different from that faced by the LV during fetal acidosis. In these experiments, the presence of fetal ductal constriction was excluded by serial Doppler studies, but a relative increase in vascular impedances, including the pulmonary vascular bed, could have occurred.

Myocardial velocities recorded by TDI during a cardiac cycle reflect shortening and lengthening of long-axis fibers situated predominantly in the subendocardium. In human fetuses, higher myocardial wall velocities in the RV than LV and IVS have been attributed to segmental differences in myocardial fiber orientation (11, 32). Although there are known

Table 5. Correlations between TDI parameters and fetal pH values

<table>
<thead>
<tr>
<th></th>
<th>Pearson’s r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVCV</td>
<td>0.54</td>
<td>0.01</td>
</tr>
<tr>
<td>Accel</td>
<td>0.68</td>
<td><0.0001</td>
</tr>
<tr>
<td>IVRV</td>
<td>0.58</td>
<td>0.005</td>
</tr>
<tr>
<td>Decel</td>
<td>0.61</td>
<td>0.003</td>
</tr>
<tr>
<td>Tei index</td>
<td>−0.62</td>
<td>0.002</td>
</tr>
<tr>
<td>E/E'</td>
<td>−0.71</td>
<td>0.005</td>
</tr>
<tr>
<td>Right ventricle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVCV</td>
<td>0.54</td>
<td>0.01</td>
</tr>
<tr>
<td>Accel</td>
<td>0.69</td>
<td><0.0001</td>
</tr>
<tr>
<td>IVRV</td>
<td>0.39</td>
<td>0.074</td>
</tr>
<tr>
<td>Decel</td>
<td>0.43</td>
<td>0.044</td>
</tr>
<tr>
<td>Tei index</td>
<td>−0.25</td>
<td>0.271</td>
</tr>
<tr>
<td>E/E'</td>
<td>−0.49</td>
<td>0.065</td>
</tr>
<tr>
<td>Interventricular septum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVCV</td>
<td>0.62</td>
<td>0.002</td>
</tr>
<tr>
<td>Accel</td>
<td>0.59</td>
<td>0.004</td>
</tr>
<tr>
<td>IVRV</td>
<td>0.44</td>
<td>0.04</td>
</tr>
<tr>
<td>Decel</td>
<td>0.55</td>
<td>0.008</td>
</tr>
<tr>
<td>Tei index</td>
<td>−0.67</td>
<td>0.001</td>
</tr>
</tbody>
</table>
structural differences between the ventricles with regard to myocardial fiber orientation and other morphometric parameters in sheep fetuses (39), the myocardial velocities obtained from the RV and LV were not significantly different in our study, suggesting that the amplitudes of myocardial deformation during the cardiac cycle are likely to reflect function, rather than pure anatomy, at least in the presence of increased R_{aa}.

The remarkable ability of fetuses to withstand hypoxia has been attributed to enhanced glycolysis in the myocardium (10, 30). Sheep fetuses maintain their cardiac output following placental embolization, despite a significant reduction in Q_{oa} (1) and moderate acidosis (26). Therefore, it is not surprising that the global myocardial function assessed by TDI also appeared to be robust in these fetuses, despite significant metabolic acidosis. This can be explained by the ability of the fetal myocardium to extract oxygen maximally from the coronary blood flow, which is probably aided by enhanced oxygen unloading at the tissue level.

Limitations of the study. The fetuses in this study were examined under general anesthesia, and there may be some effects of isoflurane on the fetal myocardium. Additionally, species differences must be considered when the results of any animal study are applied to humans. Annular myocardial velocities may vary with the position of the sample volume and insonation angle. However, care was taken to place the sample volume accurately at the level of the atrioventricular valve annulus, and the angle of insonation was $<15^\circ$ in all cases during repeated measurements. We specifically avoided analyzing TDI velocities offline from two-dimensional acquired data sets because of the inherent limitation of measuring maximal myocardial velocities at relatively low frame rates. Myocardial velocities increase with gestational age (8, 11, 32), and fetal responses to acute hypoxia are known to vary according to gestational age (20). Inasmuch as the same fetus served as its own control, the effect of gestational age was not important for the purpose of our study. However, because we chose to use late-gestation sheep fetuses with a narrow gestational age range for our experiments, we cannot conclude that similar myocardial responses would be seen in younger fetuses.

In the present study, myocardial shortening and lengthening velocities were only measured in the longitudinal direction. Cardiomyocytes in the RV are predominantly arranged longitudinally. The LV has more obliquely and circumferentially arranged myocytes than the RV (13). In adults, LV longitudinal and oblique fibers contract first, followed by circumferential fibers (4), and ventricular long-axis shortening velocities and amplitude correlate with overall ventricular function as assessed by ejection fraction (14). In addition, studies on adults have shown that, in disease states, long-axis shortening tends to decline earlier than radial function (16). In human fetuses, intraobserver variability of TDI measurements has been shown to be comparable to pulsed Doppler-derived parameters (11).

Conclusion. In sheep fetuses with increased R_{aa} and acute metabolic acidosis, the global cardiac function is preserved. Acute fetal metabolic acidosis is associated with impaired myocardial contractility during the isovolumic phase and impaired relaxation during isovolumic and early filling phases of the cardiac cycle.

ACKNOWLEDGMENTS

We thank Seppo Valli (GE Medical Systems) for the loan of the Vivid 7 Dimension ultrasound system and EchoPac software.

GRANTS

Financial Support for this study was obtained from the Academy of Finland. J. C. Huhta is supported by the Daicoff-Andrews Chair in Perinatal Cardiology of the University of South Florida and All Children’s Hospital Foundations. L. Mertens is a Clinical Investigator for the Fund for Scientific Research-Flanders.

REFERENCES