Effective arterial elastance as an index of pulmonary vascular load

Philippe Morimont,1 Bernard Lambermont,1 Alexandre Ghuysen,1 Paul Gerard,2 Philippe Kolh,1 Patrizio Lancellotti,3 Vincent Tchana-Sato,1 Thomas Desaive,1 and Vincent D’Orio1

1Hemodynamics Research Laboratory (HemoLiege), University Hospital of Liege, 2Statistics Institute, University of Liege, and 3Cardiology Department, University Hospital of Liege, Liege, Belgium

Submitted 10 July 2007; accepted in final form 16 April 2008

In current clinical practice, pulmonary arterial load [or right ventricular (RV) afterload] is usually expressed as the mean pulmonary vascular resistance, computed as the ratio of the pressure drop through the pulmonary circulation [difference between mean pulmonary arterial pressure (PAPmean) and left atrial pressure (Pla)] to the mean pulmonary blood flow [cardiac output (CO)]. Such an evaluation ignores the pulsatile nature of both pressure and flow. Although oscillatory components of the pulmonary arterial load are low, and mean resistance may be a valuable index of the pulmonary vascular load, the pulsatile nature of the load may be prominent in numerous pathological situations. Wave reflections play an important role and should be taken into account in pulmonary hypertension resulting from several pathological conditions, like pulmonary embolism and septic shock (1, 2, 5, 14). In this way, the pulmonary arterial impedance spectrum, which is defined in the frequency domain, provides a more precise and complete description of the pulmonary vascular load (12, 17). However, because of its complexity, this approach is difficult to use in clinical practice and to link with data obtained in the time domain. Sunagawa et al. introduced the concept of the effective arterial elastance (Ea), defined as a steady-state arterial parameter that incorporates the principal elements of the windkessel model of the pulmonary vascular bed (24, 25). According to this concept, Ea is computed by combining the pulmonary vascular compliance, the characteristic impedance, and the resistance of the main pulmonary vessels, as well as the pulmonary peripheral resistance. An alternative method consists in assessing Ea by the steady-state ratio of end-systolic pressure to stroke volume (Pes/SV). This ratio can be simply obtained from steady-state ventricular pressure-volume (PV) measurements, while the pulmonary impedance spectrum or the windkessel parameters require simultaneous pulmonary arterial flow and pressure waveform acquisition. Moreover, the ratio of end-systolic ventricular elastance to Ea, obtained from PV relations, characterizes the ventriculo-arterial interaction. In the systemic circulation, both normal and hypertensive human subjects show good agreement between Ea computed using left ventricular PV loop and Ea calculated from windkessel model parameter value recorded in the aorta (10). In the pulmonary circulation, it remains unknown whether or not Ea(PV) can be used as a substitute of Ea(WK) [WK denotes Ea derivation from windkessel model]. Therefore, the purpose of the present study was to assess the validity of Ea(PV) derived from steady-state RV PV data in experimental animals insulted with endotoxin or submitted to clot embolism.

Methods

All experimental procedures and protocols used in this investigation were reviewed and approved by the ethical committee of the Medical Faculty of the University of Liege and conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication no. 85-23, revised 1996). Experiments were performed on two groups of six healthy pure Pietran pigs of either sex, weighing from 16 to 28 kg. The animals were premedicated with intramuscular administration of ketamine (20 mg/kg) and diazepam (1 mg/kg). Anesthesia was then induced and maintained by a continuous infusion of sufentanil (0.5 μg·kg⁻¹·h⁻¹) and pentobarbital (5 mg·kg⁻¹·h⁻¹). Spontaneous movements were prevented by pancuronium bromide (0.2 mg·kg⁻¹·h⁻¹). After endotracheal intubation via a cervical tracheostomy, the pigs were connected to a volume-cycled ventilator (Evia 2, Drager, Lubeck, Germany) set to deliver a tidal volume of 10 ml/kg at a respiratory rate of 20 breaths/min with an inspired O₂ fraction of 0.4. End-tidal CO₂...
measurements (Capnomac, Datex, Helsinki, Finland) were used to monitor the adequacy of ventilation. Respiratory settings were adjusted to maintain end-tidal CO2 between 30 and 35 Torr. The pulmonary trunk was exposed via a median sternotomy. A micromanometer-tipped catheter (Sentron pressure measuring catheter, Cordis, Miami, FL) was inserted into the main pulmonary artery through a stab wound in the RV outflow tract. A 14-mm-diameter perivascular flow-probe (Transonic Systems, Ithaca, NY) was placed around the main pulmonary artery 2 cm downstream from the pulmonary valve. The micromanometer-tipped catheter was manipulated so that the pressure sensor was finally positioned at the level of the flow probe. Pla was measured with a micromanometer-tipped catheter inserted into the cavity through the left atrial appendage. Systemic arterial blood pressure was monitored via a micromanometer-tipped catheter inserted into the abdominal aorta through the left femoral artery. A 7-F, 12-electrode (8-mm interelectrode distance) conductance micromanometer-tipped catheter (CD Leycom, Zoetermeer, the Netherlands) was inserted through the RV infundibulum into the RV and positioned so that all electrodes were in the RV cavity. A 6-F Fogarty balloon catheter (Baxter Healthcare, Oakland, CA) was advanced into the inferior vena cava through a right femoral venotomy. Inflation of this catheter was manipulated using the conductance catheter method (3). Pes was the pressure at maximal ventricular elastance (Emax) for a steady-state loop. Maximal RV elastance was determined as [P(t)/V(t) – V0]max, where P(t) and V(t) are instantaneous RV pressure and volume, respectively; and V0 is the volume intercept of the end-systolic PV relation obtained using the preload reduction method (3).

Data analysis. We used a lumped parameter model, i.e., the three-element windkessel model (WK3), to analyze the flow conditions in the pulmonary circulation throughout the experimental protocol (Fig. 1). The 10 steady-state beats were analyzed under each condition (baseline, each 30 min after pulmonary embolism in group A or endotoxin infusion in group B), and the results were averaged. Maximal and minimal pulmonary arterial pressure defined systolic and diastolic pressures, respectively. Systolic ejection interval (t s) was measured from the foot of the pulmonary arterial pressure wave to its incisura, and the diastolic interval was t d = T – t c, where T is the cardiac length. Pairs of pressure and flow data for each beat were analyzed, and the three elements of the model were simultaneously calculated by using an original analytic procedure, as described previously (12).

RV PV loops were obtained using the conductance catheter method (3). E a definitions. An expression of the effective E a with the three parameters of the WK3 is given by (12, 21, 24):

\[E_a(WK) = RT[t_s + \tau(1 - e^{-\tau s})] \]

where RT is the total pulmonary vascular resistance, i.e., the sum of the characteristic resistance (R1) and the pulmonary arteriolar resis-
Results

Windkessel parameters and PV loop effects of arterial load variations. The effects of induced pulmonary hypertension in both groups on HR, CO, mean arterial pressure, PAPmean, Pla, and right atrial pressure are shown in Table 1. In group A, pulmonary embolism was responsible for several alterations in the shape of pressure and flow waves, including early pressure inflection, late systolic peak pressure, and sharper pulmonary arterial flow waveform (Fig. 1). The corresponding PV loops became oblong due to a rise in ejection pressure (Fig. 2, left). In group B, administration of endotoxin induced a bulging of PV loops (Fig. 2, right). These modifications were related to both reduced arterial compliance and enhanced wave reflections. Clot embolism and infusion of endotoxin lead to significant changes in the windkessel parameters, as shown in Fig. 3. In group A (Fig. 3, left), R2 did not change significantly; however, there was a rapid rise in R2 and a fall in C after pulmonary embolism. In group B (Fig. 3, right), both R1 and R2 significantly increased following endotoxin insult, whereas C progressively decreased after endotoxin insult.

Table 1. Effects of induced pulmonary hypertension on heart rate, cardiac output, systemic and pulmonary arterial pressures, and left and right atrial pressures

<table>
<thead>
<tr>
<th>HR, beats/min</th>
<th>CO, l/min</th>
<th>MAP, mmHg</th>
<th>PAPmean, mmHg</th>
<th>Pla, mmHg</th>
<th>Pra, mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>104±4</td>
<td>5.1±0.2</td>
<td>82±9</td>
<td>11±3</td>
<td>7±1</td>
</tr>
<tr>
<td>P</td>
<td>NS</td>
<td><0.05</td>
<td>NS</td>
<td><0.001</td>
<td>NS</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>114±2</td>
<td>4.8±0.2</td>
<td>76±12</td>
<td>23±3</td>
<td>6±2</td>
</tr>
<tr>
<td>P</td>
<td>NS</td>
<td><0.05</td>
<td>NS</td>
<td><0.001</td>
<td>NS</td>
</tr>
</tbody>
</table>

Values are means ± SE. T0, baseline conditions; PHT, pulmonary hypertension; HR, heart rate; CO, cardiac output; MAP, mean arterial pressure; PAPmean, mean pulmonary arterial pressure; Pla, left atrial pressure; Pra, right atrial pressure; NS, not significant.

Graph

Fig. 2. Example of right ventricular (RV) pressure-volume (PV) loops in a group A pig (left) before (thick lines) and after (thin lines) pulmonary embolism, and in a group B pig (right) before (thick lines) and after (thin lines) endotoxin infusion. Lines representing Ea = (Pes – Pla)/SV, where Pes is end-systolic pressure, Pla is left atrial pressure, and SV is stroke volume, are shown for each PV loop (dotted lines).
and RT/T: $E_a(PV) = 1.1 \cdot RT/T + 0.27 \ (r^2 = 0.96, P < 0.0001, n = 58, \text{SEE} = 0.032)$ in group A, and $E_a(PV) = 0.98 \cdot RT/T + 0.36 \ (r^2 = 0.97, P < 0.0001, n = 56, \text{SEE} = 0.059)$ in group B. The bias was still reduced using $E_a \ast (PV)$ instead of $E_a(PV)$: $E_a \ast (PV) = 1.04 \cdot RT/T + 0.11 \ (r^2 = 0.93, P < 0.0001, n = 58, \text{SEE} = 0.038)$ in group A, and $E_a \ast (PV) = 0.95 \cdot RT/T + 0.23 \ (r^2 = 0.96, P < 0.0001, n = 56, \text{SEE} = 0.051)$ in group B. The low SEE obtained in each group corresponded to a good agreement between both parameters (Fig. 6).

DISCUSSION

In the present study, we tested whether or not pulmonary vascular load could be assessed by the effective E_a determined by the simple ratio of Pes to SV [$E_a(PV)$]. Our results demonstrated that there was an excellent correlation between $E_a(WK)$ calculated from the windkessel model and E_a calculated as Pes/SV over a wide range of loading conditions resulting from either pulmonary embolism or endotoxin insult. However, the effective E_a determined by the simple ratio of Pes to SV consistently exceeded the elastance calculated from the windkessel parameters. The offset between $E_a(PV)$ and $E_a(WK)$ nearly vanished using $E_a \ast (PV)$, which incorporates Pla, instead of $E_a(PV)$. This observation implies that, contrary to what is observed in the systemic circulation, the effect of the downstream pressure on the pulmonary circulation is not negligible. Sagawa et al. suggested incorporating the presence of an effective downstream pressure into E_a (21). Nevertheless, Pla is frequently ignored in the pulmonary circulation, and E_a is calculated as the ratio of Pes to SV similarly to the systemic circulation (4, 9, 18, 28).

The linear relations between $E_a \ast (PV)$ and $E_a(WK)$ were nearly identical in both groups. These results are concordant with those of Kelly et al. (10) in the systemic circulation, who...
showed that $E_a(PV)$ provides a useful method to assess arterial load and its interaction with the human ventricle. These authors suggested that $E_a(PV)$ is a powerful tool to assess the effects of increased pulsatile load caused by aging or hypertension on PV loops. They also pointed out that mean arterial resistance often underestimated the real effects of the load on cardiac performance (10). Segers et al. (23) found that $E_a(PV)$ underestimated $E_a(WK)$ provided by the four-element windkessel model.

Our results demonstrated that $E_a(PV)$ can be used in place of $E_a(WK)$ in the pulmonary circulation. The correlation between $E_a(PV)$ and $E_a(WK)$ was excellent in normal conditions, as well as after pulmonary embolism or endotoxin infusion, as shown by the Bland-Altman test in both groups. In group A, E_a showed an asymptotic increase early after the pulmonary embolism, in concordance with an acute loss of compliance and a rapid rise of the total resistance offered by the pulmonary vascular tree. In group B, E_a progressively increased with an exponential trend associated with a progressive decrease in compliance and a slow rise in the total resistance of the pulmonary vasculature. Although experimental conditions were totally different, the linear correlations between both methods in each group were nearly similar.

Our data showed that pulmonary embolism or endotoxin insult led to a complex pulmonary vascular response involving a dynamic, time-dependent interplay between R_1, C, and R_2. Nevertheless, the correlation between both methods in each group remained excellent over the range of important variations in the windkessel parameters.

The ratio of E_{max} on $E_a (E_{max}/E_a)$ is superior to one in the normal heart, suggesting that the ventricle operates close to the optimal efficiency. Our laboratory previously showed that, in heart failure due to pulmonary embolism and sepsis, the decreased value of E_{max}/E_a was related to an impaired use of energy by the failing heart (6, 13, 15). In combination with E_{max}, $E_a(PV)$ appears to be a simple way to characterize ventriculo-arterial interaction (18, 26, 27). For the systemic circulation, Segers et al. (23) suggested that E_a can be approximated by RT/T only for high C values. For the pulmonary circulation, our results evidenced significant correlation between both methods, as well as between $E_a(PV)$ and RT/T, despite dramatic changes in pulmonary vascular compliance. Our laboratory previously showed a concordant evolution between E_{max}/E_a and stroke work in pulmonary embolism or septic shock (6, 13, 15). This could be explained by higher basal pulmonary vascular compliance compared with the values obtained on the systemic circuit.

The determination of E_a as the simple ratio of Pes minus Pla to SV to assess pulmonary vascular load is rapidly and easily feasible in clinical settings. In contrast, $E_a(WK)$ requires invasive measurement of pulmonary flow and pressure waves, which limits its potential use (8, 19).
RV tolerance and adaptation to chronic or acute increase in pulmonary vascular load may be a cornerstone in the prognosis of patients suffering from pulmonary hypertension. Therefore, evaluation of RV-pulmonary arterial coupling by using the ratio of contractility, assessed by the slope of the end-systolic PV relationship, to E\textsubscript{a} seems essential to evaluate correctly the facilitation of energy transfer from the RV into the pulmonary circuit (11). However, determination of E\textsubscript{max} requires preload variation that is difficult to apply in clinical practice. It is the reason why single-beat methods have been developed, but unfortunately not yet validated for the RV. Therefore, further studies should be encouraged (16, 22). As pathophysiological RV conditions are often associated with valve insufficiencies, SV was derived from pulmonary arterial flow divided by HR.

Some study limitations should be acknowledged. E\textsubscript{a}(WK) and E\textsubscript{a} * (PV) were related through two assumptions (Eqs. 2–6). Diastolic time constant (\(t_a = R_2 \cdot C\)) is long relative to the diastolic time period (\(t_0\)), and Pes is approximately equal to PAP\textsubscript{mean}. Compared with the systemic vasculature, lower pulmonary vascular resistance is counterbalanced by higher pulmonary vascular compliance in such a way that the first assumption can be considered as valid in basal conditions. In pulmonary hypertension, rise in R\textsubscript{2} prevails on loss in C, so the first assumption holds. Because of lower pulmonary arterial pressure levels, discrepancy between Pes and PAP\textsubscript{mean} is more important than in the systemic vascular tree. However, in pulmonary hypertension, due to higher pulmonary arterial pressure levels and enhanced wave reflections occurring during systole, PAP\textsubscript{mean} tends to be nearer to Pes.

In summary, several recent studies highlighted the importance of abnormal pulsatile load effect in the mechanism of right heart failure (1, 2, 7, 20). Several methods to assess pulmonary vascular load have been proposed, but require a complete acquisition of pulmonary arterial pressure and flow waveforms. As a result, such methods are difficult to apply in current clinical practice. In the present study, we suggest that pulmonary arterial load can be simply assessed from the ratio of RV Pes minus P\textsubscript{a} to RV SV in the setting of pulmonary hypertension. The downstream pressure plays an important role in the pulmonary circulation and should be incorporated into the pulmonary effective E\textsubscript{a}.

APPENDIX: CALCULATION OF WK3 PARAMETERS

The relationship between pressure and flow in the electrical representation of WK3 is described by the following equation:

\[
P(t) + R_1C \frac{dP(t)}{dt} = (R_1 + R_2)Q(t) + R_1R_2C \frac{dQ(t)}{dt} \quad (A1)
\]

where Q is pulmonary flow; P is pulmonary arterial pressure; and \(t_0\) is the beginning of the cardiac cycle, defined as the R wave on the ECG. R\textsubscript{1}, R\textsubscript{2}, and C are the three elements of the WK3 (Fig. 1). Eq. A1 is integrated and becomes:

\[
\int_{t_0}^{t} Q(t)d\tau = k_1 \int_{t_0}^{t} P(t)d\tau + k_2 \int_{t_0}^{t} \left[(P(t) - P(t_o)) + k_3 (Q(t) - Q(t_o)) \right] \quad (A2)
\]

where

\[
k_1 = \frac{1}{R_1 + R_2}, \quad k_2 = \frac{CR_2}{R_1 + R_2}, \quad \text{and} \quad k_3 = -\frac{CR_2}{R_1 + R_2} \quad (A3)
\]

The multiple-regression technique estimates the constants \(k_i\) to minimize the residual sum of squares (RSS), i.e., the sum of squared differences between the observed values of both parts of this equation

\[
RSS = \sum \left[\int_{t_0}^{t} Q(t)d\tau - k_1 \int_{t_0}^{t} P(t)d\tau - k_2 \left[(P(t) - P(t_o)) + k_3 (Q(t) - Q(t_o)) \right] \right]^2 \quad (A4)
\]

R\textsubscript{1}, R\textsubscript{2}, and C values are then derived by solving Eq. A3.

GRANTS

This work was supported by a grant from the Leon Fredericq Foundation of the University of Liege (Belgium).

REFERENCES

16. Lambermont B, Segers P, Ghuysen A, Tchana-Sato V, Morimont P, Dogne JM, Kolh P, Gerard P, D’Orio V. Comparison between single-

