Effect of ANG II on endothelial cell apoptosis and survival and its impact on skeletal muscle angiogenesis after electrical stimulation

Micheline M. de Resende and Andrew S. Greene
Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin

Submitted 30 January 2008; accepted in final form 17 April 2008

De Resende MM, Greene AS. Effect of ANG II on endothelial cell apoptosis and survival and its impact on skeletal muscle angiogenesis after electrical stimulation. Am J Physiol Heart Circ Physiol 294: H2814–H2821, 2008. First published April 25, 2008; doi:10.1152/ajpheart.00095.2008.—We have previously shown that the low levels of ANG II during high-salt diet would increase EC apoptosis and consequently diminish the angiogenic response. To test this hypothesis, a series of in vitro and in vivo studies was performed. EC apoptosis and viability were evaluated after incubation with ANG II under serum-free conditions. After 24 h of incubation, ANG II increased EC viability and Bcl-2-to-Bax ratio along with a dose-dependent decrease in EC apoptosis. This effect was blocked by the ANG II type 1 receptor antagonist losartan. To confirm our in vitro results, ANG II (3 ng·kg⁻¹·min⁻¹) was chronically infused in rats fed a high-salt diet (4% NaCl). ANG II decreased EC apoptosis and produced a significant increase (40%) in skeletal muscle angiogenesis induced by electrical stimulation. These in vivo results were in agreement with our in vitro results and demonstrate that the attenuation of ANG II levels during a high-salt diet may induce EC apoptosis and consequently block the angiogenic response induced by electrical stimulation. Furthermore, under normal conditions, ANG II increases EC viability and protects EC from apoptosis possibly by inactivation of the mitochondrial apoptotic pathway.

Angiogenesis consists of the formation of new capillaries from preexisting blood vessels (10) and is involved in physiological processes as well as in several pathological conditions such as tumor growth, diabetic retinopathy, atherosclerosis, and ischemic disease (9). The formation of new blood vessels is a complex process that involves several steps that include the stimulation of endothelial cells (ECs) by growth factors, degradation and invasion of the extracellular matrix, migration and proliferation of ECs, and finally the formation of new capillaries (10, 18). The permanency of the newly formed capillaries will be dependent on the balance between proangiogenic and/or prosurvival factors and antiangiogenic and/or prodeath factors (21, 18, 44). A number of drugs that interfere with the angiogenic balance have been studied extensively and are having a marked impact in a wide spectra of angiogenesis-related diseases.

ANG II, the main effector peptide of the renin-angiotensin system (RAS), has an important angiogenic property long-established in several in vivo systems, including the chick chorioallantoic membrane assay (27) subcutaneous sponge implant model (47), hindlimb ischemia (42), oxygen-induced retinopathy (31, 33), and tumor models (46, 19, 22). However, there are continuing efforts to understand the biological actions and expand knowledge of the mechanisms through which ANG II acts as a mediator of the angiogenic responses. Several related mechanisms have been proposed, including stimulation of EC proliferation (43) and increase in expression of several growth factors, including vascular endothelial growth factor and its receptors (13, 36). More recently a study has indicated that ANG II increased retinal angiogenesis, decreasing EC apoptosis by a mechanisms involving phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) activation, subsequent upregulation of survivin, and suppression of caspase-3 activity (35).

Over the past several years, we have provided experimental evidence showing the role of the RAS in the regulation of skeletal muscle angiogenesis induced by exercise or electrical stimulation (1, 2, 3, 37, 16) using genetic, pharmacological, and physiological approaches to dissect the mechanisms by which ANG II interferes with the angiogenic process. Recently, we have shown that transfer of chromosome 13, containing the renin gene, from the normotensive BN/Mcwi rat in the salt-sensitive hypertensive (SS/JrHsdMcwi) rat genetic background restored the plasma renin and angiogenesis response induced by electrical stimulation (16). However, this effect was significantly attenuated when the rats were fed a high-salt diet. To better understand the mechanisms involved in the inhibition of the angiogenic response by high-salt diet, we performed a microarray study that indicated upregulation of many genes related to apoptosis associated to a significant increase in EC death in the stimulated skeletal muscle (16). Because the RAS is significantly attenuated under high-salt conditions, we hypothesized that the modulation of ANG II levels may interfere with EC death pathways and consequently affect the angiogenic response in the skeletal muscle of rats fed a high-salt diet. To test this hypothesis, in the present study, we designed a series of in vitro and in vivo experiments to test the effects of ANG II on EC survival and apoptosis as well as its effect on the angiogenesis restoration in rats fed a high-salt diet.

Materials and Methods

Induction and quantitative determination of EC apoptosis, proliferation, and viability in culture. To induce apoptosis in ECs, a serum deprivation method was used as described previously (26). Briefly, 20,000 primary ECs were plated on four-well chamber slides and the costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
incubated for 24 h in complete RPMI medium with 20% serum. After 24 h, cells were washed in complete or serum-free medium according to the experimental design, and the medium was changed to serum-free medium containing varying concentrations of ANG II, with or without losartan, as indicated in legends for Figs. 1–5. The control cells were maintained in complete RPMI medium and 20% serum during the 24-h incubation period. The number of apoptotic cells was determined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL; Promega, Madison, WI) according to the manufacturer’s protocol. The slides were treated with 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI; Molecular Probes) to quantify the total nuclei and to minimize fluorescence bleaching. Immunofluorescence microscopy was performed using a ×20 objective.

A CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega) kit containing the tetrazolium compound MTS was used to monitor EC viability and proliferation according to the manufacturer’s protocols. MTS color change was monitored by using a Tecan Spectrafluor Plus microplate reader (Tecan, Crailsheim, Germany) set at an absorbance reading of 492 nm. The quantity of formazan product as measured by the absorbance at 492 nm is directly proportional to the number of viable cells in proliferation.

Western blot for Bcl-2 and Bax. Primary ECs were washed with cold PBS and lysed in RIPA buffer (150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris base, pH 8.0) containing protease inhibitors (10 mM sodium pyrophosphate, 100 mM NaF, 1 mM Na3VO4, 1 μg/ml aprotinin, 1 μg/ml leupeptin, and 2 mM phenylmethylsulfonyl fluoride). Protein was separated in denaturing SDS–10–20% polyacrylamide gel (30 μg/lane) and then blotted on a nitrocellulose membrane. Membranes were incubated with a rabbit polyclonal antibody for Bax (dilution 1:500; Santa Cruz) and Bcl-2 (dilution 1:1,000; BD Pharmingen, San Diego, CA) for 2 h at room temperature and after serum washes (5 X 3 min in TBS-Tween 20) with the secondary antibody (anti-rabbit IgG, 1:3,000) for 1 h at room temperature. Immunoblots were visualized by chemiluminescence (Pierce, Rockford, IL), followed by autoradiography.

In vivo ANG II infusion. The Medical College of Wisconsin (MCW) Institutional Animal Care and Use Committee approved all animal protocols. Animals were housed and cared for in the MCW Animal Resource Center and were given food and water ad libitum. A consomic rat strain (SS-13BN/Mcwi) derived from BN/Mcwi rats and Dahl-SS/JrHsdMcwi rats was used in these studies; the origin of this strain has been described previously (15). Rats were placed on a high protein diet, SS-13BN rats gained significantly more weight compared to rats on a regular diet. The capillary-to-myofiber ratio as described earlier (38).

Quantitative determination of apoptosis in TA muscle. Frozen TA muscles were sectioned (8 μm), mounted on positively charged slides, air-dried for 30 min, and fixed in cold acetone for 5 min, 1:1 acetone-chloroform (vol/vol) for 5 min, and acetone for 5 min. Samples were washed three times with PBS, pH 7.2, and double stained with CD31, and TUNEL as previously described (16). The slides were treated with DAPI (Molecular Probes) to quantify the total nuclei and to minimize fluorescence bleaching. Immunofluorescence microscopy was performed using a ×20 objective. ECs were identified by red fluorescence (CD31), total cell number was detected by blue fluorescence (DAPI, DNA staining), and apoptosis was detected by green fluorescence (TUNEL). Apoptotic ECs were detected by colocalized red and green (displayed as yellow) fluorescence. Quantification of apoptotic ECs was expressed as an average of the ratio of apoptotic ECs per square millimeter to the total number of cells (DAPI staining) or total number of ECs (CD31 staining) per square millimeter at ×20 magnification.

To determine whether ECs in skeletal muscle underwent apoptosis after electrical stimulation, the number of apoptotic cells (TUNEL positive) was divided by the total cell number (DAPI staining) to determine the percentage of apoptotic cells in the muscle tissue. To determine the percentage of apoptotic ECs, the number of TUNEL/CD31 double stained positive cells (apoptotic ECs) was normalized to the total EC number (CD31 staining).

Data analysis and statistics. The results were expressed as means ± SD. In vitro data were analyzed by repeated-measures one-way ANOVA followed by Dunnett’s post hoc test. To evaluate the significance of differences in vessel density between stimulated and unstimulated limbs, a one-factor analysis of variance was performed. Significant differences were further investigated using a post hoc test (Tukeys).

RESULTS

Effect of ANG II on skeletal muscle microvascular EC apoptosis, proliferation, and viability. ECs underwent apoptosis after 24 h of serum deprivation, showing typical characteristics such as cell shrinkage, nuclear fragmentation, and chromatin condensation, which is consistent with apoptotic morphology (Fig. 1A). After 24 h, serum deprivation promoted a dramatic reduction in the number of attached ECs by ~70%. ANG II at doses of 10–100 nmol significantly increased the number of attached ECs. This effect was completely inhibited by the ANG II receptor I blocker losartan (1 μM; Fig. 1B). ANG II also promoted a dose-dependent decrease in EC apoptosis, becoming significantly lower than the serum-free condition at a dose of 50 and 100 nmol (Fig. 1C). Losartan (1 μM) completely abolished the ANG II antiapoptotic effect. Because cell death is preceded by loss of cell viability and proliferation, we carried out a viability and proliferation assay for ECs treated with different ANG II concentrations (3, 10, 50, and 200 nmol). As shown in Fig. 2, EC viability decreased significantly by ~50% in serum-free conditions. ANG II restored EC viability in a dose-dependent manner, reaching a 64 to 72% increase at the doses of 50 and 200 nmol ANG II, respectively. This result was further validated by the dose-dependent increase in EC count after 24 h incubation with ANG II (Fig. 1B).
ANG II-induced EC survival is mediated by inactivation of the mitochondrial apoptotic pathway. To further study the mechanisms underlying the antiapoptotic effect of ANG II in microvascular ECs, we investigated key regulatory pathways that control the cellular response to apoptosis. The Bcl-2 and Bax proteins are central modulators of apoptosis that operate predominantly within the mitochondrial pathway (17, 25). These proteins interact by functionally antagonizing each other: Bcl-2 suppresses and Bax promotes apoptosis (41). Serum deprivation (24 h) promoted a significant increase in Bax protein expression in ECs (34.1 \pm 1.56 \text{ vs. } 42.8 \pm 4.87 \text{ arbitrary units}; \ P < 0.05) (Fig. 3A). This effect was suppressed by ANG II, with a significant decrease at a dose of 100 nmol compared with the serum-free condition (42.8 \pm 4.87 \text{ vs. } 33.1 \pm 1.48 \text{ arbitrary units}; \ P < 0.05) (Fig. 3A). Bcl-2 expression did not change significantly in response to any treatment (Fig. 3B). However, The Bcl-2-to-Bax ratio was significantly decreased in serum-free conditions compared with control, and ANG II promoted a dose-dependent increase in the Bcl-2-to-Bax ratio, with a significant increase at the dose of 100 nmol compared with serum-free conditions (0.96 \pm 0.20 \text{ vs. } 1.21 \pm 0.16; \ P < 0.05) (Fig. 3C).

Effect of ANG II on skeletal muscle endothelial apoptosis and angiogenesis in vivo. We have previously reported that high-salt diet significantly increases EC apoptosis and inhibits skeletal muscle angiogenesis (represented by a reduction in lectin-labeled microvessel density and capillary-to-fiber ratio), induced by electrical stimulation (16). Figure 4 revealed that, in contrast with the saline infusion group (Fig. 4, A and B), there was a significant increase in the capillary density represented by capillary per square millimeter and capillary-to-muscle fiber ratio in the stimulated hindlimb of rats that were...
fed with high-salt diet and received ANG II infusion, as depicted in examples of unstimulated and stimulated TA muscle sections (Fig. 4, C and D) and in the quantitative analysis (Fig. 4, E and F). The double immunostaining for TUNEL/CD31 (Fig. 5, A–D) confirm that ANG II acts as a survival factor for ECs in vivo, restoring the angiogenesis response after electrical stimulation and attenuating the increase in EC apoptosis induced by high-salt diet. ANG II infusion also blunted the increase in EC apoptosis in the stimulated TA muscle of rats fed a high-salt diet (Fig. 5, E and F). The number of nonendothelial TUNEL positive cells was not significantly changed in the stimulated vs. unstimulated TA muscle of rats that received saline or ANG II infusion (Fig. 5G).

DISCUSSION

Inhibition of EC apoptosis and consequent increase in EC survival is thought to be essential during the angiogenic process (21). In contrast, several lines of evidence suggest that the induction of EC apoptosis may counteract angiogenesis, and it is frequently associated with vessel quiescence or even vessel regression (11). Although several studies have been shown that ANG II can induce apoptosis in different cell types, including fibroblasts (28), cardiomyocytes (14), and vascular smooth muscle cells (8), little is known about whether ANG II plays either an anti- or a proapoptotic role in ECs, especially in microvascular ECs such as skeletal muscle vascular ECs. In the present study, we provide new insights into the effects of ANG II on EC apoptosis and the underlying mechanisms and its impact on skeletal muscle angiogenesis induced by electrical stimulation.

The present study shows that ANG II protects ECs against apoptosis induced by serum deprivation in a dose-dependent...
manner. In addition, ANG II at a dose of 10–100 nmol was able to maintain EC number even under serum-free conditions. This effect was dependent on ANG II receptor I activation (AT1 receptor), since losartan completely blocked the antideath and proliferative effect of ANG II on ECs. Depending on the cell type, AT1 receptor activation may have proapoptotic (8, 14, 24) or antiapoptotic (4, 30, 35, 39) effects. An antiapoptotic effect related to AT1 receptor activation was recently reported in retinal microvascular ECs showing that Candesartan, an AT1 antagonist, completely suppressed the antiapoptotic effect of ANG II on ECs, whereas PD-123319, an AT2 antagonist, had no effect (35). The survival effects of AT1 receptor activation were related to activation of PI 3-kinase and Akt, (45) which is a common feature in the signal transduction of the antiapoptotic effects of many growth factors.

The maintenance of total cell number is constantly balanced by cell death and proliferation. Because cell death is preceded by a loss of cell viability and reduction in the proliferation rate, we also evaluated EC viability and proliferation after 24 h of ANG II administration in addition to different doses of ANG II. This study showed that the reduction in EC apoptosis after 24 h of ANG II infusion, respectively, was associated with a significant increase in EC viability and proliferation. ANG II promoted a dose-dependent increase in EC survival, reaching an 80%
increase at the dose of 200 nmol. This result was further validated by the dose-dependent increase in EC count after 24 h incubation with ANG II. Other studies have indicated that ANG II may affect angiogenesis by promoting proliferation and increasing survival of several cell types (22, 5, 6, 40); however, little is known about the effect of ANG II in EC survival and the molecular mechanisms involved.

To investigate the apoptotic pathways affected by ANG II in microvascular ECs, we focused on the regulation of the mitochondrial proteins Bax and Bcl-2. These proteins are central modulators of apoptosis that operate predominantly within the mitochondria (17, 25). They interact by functionally antagonizing each other; Bcl-2 suppresses and Bax promotes apoptosis (41). The balance between cell viability and apoptosis depends on the ratio of Bcl-2 to Bax proteins. The present study shows that ANG II inhibited the increase in Bax expression induced by serum deprivation, leading to a dose-dependent increase in the Bcl-2-to-Bax ratio, which was significantly greater than the serum-free condition at a dose of 100 nmol. Several studies have shown that the Bcl-2-to-Bax ratio controls...
cell death, and an increase in this ratio may affect angiogenesis and the progression of numerous conditions, including different types of cancers (12, 32, 7), ischemic retinopathy (48), and the persistency of fetal ocular vasculature (20). Although previous studies in our laboratory have consistently demonstrated the effect of ANG II on angiogenesis induction after electrical stimulation (34, 1, 37), this finding brings new evidence on the mechanisms by showing that ANG II prevents activation of the mitochondrial apoptotic pathway, increasing EC survival, and that it may have an important impact on skeletal muscle angiogenesis after electrical stimulation.

Because the in vitro data strongly indicated an antiapoptotic function of ANG II, we decided to further investigate the potential role of ANG II in apoptosis in vivo by using a rat model of electrically stimulated skeletal muscle angiogenesis. Previously, we have shown that inhibition of the RAS with high-salt diet significantly attenuated angiogenesis induced by electrical stimulation, and this phenomenon was associated with a significant increase in EC apoptosis in the stimulated hindlimb (16). We have previously shown that ANG II levels are suppressed during high-salt diet and restored to the level on a low-salt diet after ANG II infusion (37). Therefore, we hypothesized that the decrease of ANG II levels may activate EC death pathways and consequently attenuate the angiogenic response in the skeletal muscle of rats fed a high-salt diet. This hypothesis is strongly supported in the present study, which shows that a subpressor dose of ANG II infusion was able to reestablish the angiogenesis response after electrical stimulation in animals fed a high-salt diet. In contrast to the saline infusion group, rats fed a high-salt diet and infused with ANG II had a dramatic increase of ∼60% in the capillary density after electrical stimulation. Interestingly, the ANG II infusion prevented the increase in EC apoptosis promoted by high-salt diet. Our in vitro results were further validated by the in vivo antiapoptotic effect of ANG II, suggesting that ANG II promotes the survival of microvascular cells and that suppression of ANG II signaling actually increases EC apoptosis and consequently reduces skeletal muscle vascular viability, having a significant impact in the angiogenesis response after electrical stimulation.

ACKNOWLEDGMENTS

We thank Christine Puza and Erika Keyes for expert technical assistance and Hugo Metz for data analysis assistance.

GRANTS

This work was supported by National Institutes of Health Grants NIH HL-29587, NO1-HV-28182, and HL-082798-02.

REFERENCES

