Microvascular oxygen delivery-to-utilization mismatch at the onset of heavy-intensity exercise in optimally treated patients with CHF

Priscilia Abreu Sperandio,1,2 Audrey Borghi-Silva,1,3 Adriano Barroco,1,2 Luiz Eduardo Nery,1 Dirceu R. Almeida,2 and J. Alberto Neder1

1Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo; 2Division of Cardiology, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo; and 3Cardiopulmonary Laboratory, Nucleus of Research in Physical Exercise, Federal University of Sao Carlos (UFSCar), Sao Carlos, SP, Brazil

Submitted 6 July 2009; accepted in final form 4 September 2009

Sperandio PA, Borghi-Silva A, Barroco A, Nery LE, Almeida DR, Neder JA. Microvascular oxygen delivery-to-utilization mismatch at the onset of heavy-intensity exercise in optimally treated patients with CHF. Am J Physiol Heart Circ Physiol 297: H1720–H1728, 2009. — Impaired muscle blood flow at the onset of heavy-intensity exercise may transiently reduce microvascular O2 pressure and decrease the rate of O2 transfer from capillary to mitochondria in chronic heart failure (CHF). However, advances in the pharmacological treatment of CHF (e.g., angiotensin-converting enzyme inhibitors and third-generation β-blockers) may have improved microvascular O2 delivery to an extent that intramyocyte metabolic inertia might become the main locus of limitation of O2 uptake (VO2p) kinetics. We assessed the rate of change of pulmonary VO2 (VO2p), (estimated) fractional O2 extraction in the vastus lateralis (Δ[deoxy-Hb+Mb]) by near-infrared spectroscopy, and cardiac output (Qt) during high-intensity exercise performed to the limit of tolerance (Tlim) in 10 optimally treated sedentary patients (ejection fraction = 29 ± 8%) and 11 controls. Sluggish VO2p and Qt kinetics in patients were significantly related to lower Qt values (P < 0.05). The dynamics of Δ[deoxy-Hb+Mb], however, were faster in patients than controls [mean response time (MRT) = 15.9 ± 2.0 vs. 19.0 ± 2.9 s; P < 0.05] with a subsequent response “overshoot” being found only in patients (7/10). Moreover, τVO2p/MRT-[deoxy-Hb+Mb] ratio was greater in patients (4.69 ± 1.42 s vs. 2.25 ± 0.77 s; P < 0.05) and related to Qt kinetics and Tlim (R = 0.89 and −0.78, respectively; P < 0.01). We conclude that despite the advances in the pharmacological treatment of CHF, disturbances in “central” and “peripheral” circulatory adjustments still play a prominent role in limiting VO2p kinetics and tolerance to heavy-intensity exercise in nontrained patients.

blood flow; chronic heart failure; hemodynamics; near-infrared spectroscopy; oxygen consumption

THE TIME COURSE IN WHICH PULMONARY OXYGEN UPTAKE (VO2p) ADAPTS TO DYNAMIC EXERCISE IS CHARACTERISTICALLY SLOWED IN PATIENTS WITH CHRONIC HEART FAILURE (CHF) COMPARED TO AGE-MATCHED CONTROLS (7, 58, 61). THE SLOWED VO2p KINETICS (I.E., LARGER O2 DEFICIT) LEADS TO GREATER RELIANCE ON O2-INDEPENDENT PATHWAYS FOR ATP REGENERATION AND ACCUMULATION OF BY-PRODUCTS RELATED TO INCREASED MUSCLE FATIGABILITY (E.G., INORGANIC PHOSPHATE AND H+) (2, 56). IN FACT, FASTER VO2p KINETICS AFTER SELECTED THERAPEUTIC AND REHABILITATIVE STRATEGIES HAVE BEEN ASSOCIATED WITH IMPROVED EXERCISE TOLERANCE IN CHF PATIENTS (12, 48, 63), SUGGESTING THAT AMELIORATION OR RESOLUTION OF THE IMPAIRED OXIDATIVE METABOLISM AT THE ONSET OF EXERCISE HAS IMPORTANT CLINICAL IMPLICATIONS (AS REVIEWED IN REF. 1).

IT IS WIDELY RECOGNIZED THAT DISTURBANCES IN THE DIFFUSIVE AND/OR CONVECTIVE TRANSPORT OF O2 TO SKELETAL MUSCLE MITOCHONDRIA (31, 41) AND/OR INTRAMYOCYTE METABOLIC MACHINERY (9, 25, 26) COULD EXPLAIN THE SLOWNESS OF VO2p KINETICS IN PATIENTS WITH CARDIOPULMONARY AND METABOLIC DISORDERS (7, 51, 61). IN THIS CONTEXT, IT CAN BE ANTICIPATED THAT IF THE INCREASE IN MUSCLE MICROVASCULAR O2 DELIVERY (QO2mv) SLOWS TO A GREATER EXTENT THAN THE RATE OF CHANGE IN MUSCLE VO2 AS ESTIMATED BY THE KINETICS OF THE “PRIMARY” COMPONENT OF VO2p (2, 25, 56), FRACTIONAL O2 EXTRACTION [=CHANGES (Δ) IN THE DEOXYGENATED HEMOGLOBIN + MYOGLOBIN ([DEOXY-Hb+Mb]) SIGNAL] BY NEAR-INFRARED (NIR) SPECTROSCOPY (NIRS) WOULD BE ACCELERATED IN CHF PATIENTS (14, 22, 23, 28). CONVERSELY, IF THE RATE OF INCREASE IN FRACTIONAL O2 EXTRACTION IS SLOWED IN CHF PATIENTS AT THE ONSET OF EXERCISE, THIS WOULD ARGUE AGAINST A PREVIOUSLY ASSUMED ROLE OF INSUFFICIENT QO2mv IN LIMITING VO2p KINETICS, THEREBY SUGGESTING THAT VO2 DYNAMICS ARE LIMITED BY A SLOW ACTIVATION OF INTRACELLULAR METABOLIC PATHWAYS (9, 25, 26).

THE RELATIONSHIP BETWEEN QO2mv AND O2 UTILIZATION, HOWEVER, HAS BEEN TO DATE EXPLORED ONLY IN ANIMAL MODELS WITH NONTREATED CHF INDUCED BY MYOCARDIAL INFARCTION (5, 6, 18, 20, 35, 45). BY USING PHOSPHORESCENCE QUENCHING TO OBTAIN INTRAVITAL MEASUREMENTS OF MICROVASCULAR PO2 (PO2mv) (59), PREVIOUS INVESTIGATORS REPORTED THAT CHF WAS INDEED ASSOCIATED WITH QO2mv-TO-VO2 MISMATCHING, A FINDING THAT WAS MODULATED BY DISEASE SEVERITY (18, 20), FIBER TYPING (5, 45), AND SENESCENCE (6, 20). HOWEVER, IT IS UNKNOWN WHETHER THESE SEMINAL OBSERVATIONS ARE ACTUALLY APPLICABLE TO HUMANS WITH NATURALLY OCCURRING CHF RECEIVING CONTEMPORARY PHARMACOLOGICAL TREATMENT. IN FACT, THE LAST DECADES BROUGHT ABOUT MAJOR CHANGES IN THE TREATMENT PARADIGMS OF CHF [E.G., ANGIOTENSIN-CONVERTING ENZYMES INHIBITORS (ACEIs)/ANGIOTENSIN-RECEPTOR BLOCKERS (ARBs) AND β-ADRENERGIC BLOCKERS (17, 32), WHICH MIGHT BE EFFECTIVE IN IMPROVING CHF-RELATED ENDOTHELIAL DYSFUNCTION (49, 55) AND EXCESSIVE SYMPATHETIC AND NEUROHUMORAL ACTIVATION (16, 19) WITH POSITIVE CONSEQUENCES ON MUSCLE BLOOD FLOW (52, 55). IN FACT, COMBINED THERAPY WITH ACEIs AND ARBs AND CARVEDILOL, A β-ADRENERGIC ANTAGONIST WITH VASODILATORY PROPERTIES (α1-ANTAGONISM), IS PARTICULARLY EMPHASIZED IN CLINICAL GUIDELINES (17, 32). THESE RECOMMENDATIONS WERE BASED ON THE EVIDENCE THAT THESE DRUGS MIGHT WORK SYNERGISTICALLY TO IMPROVE LEFT VENTRICULAR (LV) EJECTION FRACTION AND LESSEN LV REMODELING WITH POSITIVE CONSEQUENCES ON HOSPITALIZATIONS AND

Address for reprint requests and other correspondence: J. A. Neder, Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE); Respiratory Division, Dept. of Medicine; Federal Univ. of Sao Paulo-Paulista School of Medicine (UNIFESP-EPFM); Rua Professor Francisco de Castro 54, Vila Clementino, CEP 04020-050, Sao Paulo, Brazil (e-mail: albnder@pneumo.epm.br).
survival (17, 32, 53). However, the effects of CHF on the dynamics of (estimated) muscle Q_{2mv}-to-V_{O2} matching at the onset of exercise in optimally treated humans with naturally occurring forms of the disease remain unknown.

The objective of the present study, therefore, was to investigate the relationship between the dynamics of Q_{2mv} and O_2 utilization at the onset of heavy-intensity exercise in nontrained patients with advanced CHF receiving contemporary pharmacological therapy. We tested the hypothesis that the therapeutic advances in the treatment of CHF (17, 32) might have improved Q_{2mv} to an extent that the slowness of intramyocytic metabolic machinery would become the limiting step of V_{O2p} kinetics. For this purpose, we simultaneously assessed the rate of change of V_{O2p}, $\Delta[\text{deoxy-Hb} + \text{Mb}]$, and cardiac output (Qt) during an exercise bout performed above the gas-exchange threshold (GET) to the limit of tolerance (Tlim) in a group of CHF patients and age-matched controls. We reasoned that knowledge of the precise etiological mechanisms leading to the clinical burden in this patient population.

METHODS

Subjects

This was a prospective study involving 10 nonsmoking men recruited from the CHF Outpatients Clinic of our institution and 11 age- and sex-matched controls. Patients had an established diagnosis of CHF for at least 4 yr, three-dimensional echocardiography showing left ventricle ejection fraction (LVEF) < 35%, and New York Heart Association classification scores II–III. The patients have been optimally treated for CHF for at least 3 yr (Table 1) according to the American Heart Association/American College of Cardiology treatment recommendations for stage “C” patients, i.e., reduced LVEF and current or previous symptoms of heart failure (32). No patients showed left ventricle ejection fraction, %

Table 1. Resting and exercise data from healthy subjects and optimally treated patients with CHF

<table>
<thead>
<tr>
<th>Controls, $n = 11$</th>
<th>CHF, $n = 10$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anthropometrics/demographics</th>
<th>Controls, $n = 11$</th>
<th>CHF, $n = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>62.4 ± 5.9</td>
<td>60.9 ± 8.8</td>
</tr>
<tr>
<td>Body mass, kg</td>
<td>79.4 ± 15.9</td>
<td>76.9 ± 13.7</td>
</tr>
<tr>
<td>Body mass index, kg/m2</td>
<td>23.9 ± 3.8</td>
<td>22.5 ± 4.1</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>Left ventricle ejection fraction, %</td>
<td>59.7 ± 5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Controls, $n = 11$</th>
<th>CHF, $n = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuretics</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Spironolactone</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Digoxin</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Carvediol</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors/AR blockers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incremental exercise</th>
<th>Controls, $n = 11$</th>
<th>CHF, $n = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power, W</td>
<td>132 ± 19</td>
<td>83 ± 14*</td>
</tr>
<tr>
<td>V_{O2p}, ml/min</td>
<td>1,708 ± 204</td>
<td>1,315 ± 192*</td>
</tr>
<tr>
<td>V_{O2p}, ml/min·kg$^{-1}$</td>
<td>23 ± 4.2</td>
<td>15.1 ± 2.8*</td>
</tr>
<tr>
<td>V_{O2p}, % pred</td>
<td>88.9 ± 10.1</td>
<td>53.1 ± 19.4*</td>
</tr>
<tr>
<td>V_{O2p}, ml/min</td>
<td>1,080 ± 175</td>
<td>785 ± 128*</td>
</tr>
<tr>
<td>HR, bpm</td>
<td>153 ± 12</td>
<td>134 ± 10*</td>
</tr>
<tr>
<td>HR, % pred</td>
<td>95.3 ± 4.7</td>
<td>74.1 ± 10.9*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constant work rate exercise</th>
<th>Controls, $n = 11$</th>
<th>CHF, $n = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power, W</td>
<td>90 ± 13</td>
<td>58 ± 12*</td>
</tr>
<tr>
<td>Time to exercise intolerance, s</td>
<td>495 ± 168*</td>
<td>315 ± 103*</td>
</tr>
<tr>
<td>V_{O2p}, ml/min</td>
<td>1,684 ± 181</td>
<td>1,292 ± 200*</td>
</tr>
<tr>
<td>HR, bpm</td>
<td>145 ± 10</td>
<td>130 ± 9*</td>
</tr>
<tr>
<td>SV, ml</td>
<td>104.3 ± 16.1</td>
<td>80.2 ± 14.3*</td>
</tr>
<tr>
<td>Q_T, l/min</td>
<td>14.8 ± 2.1</td>
<td>9.9 ± 2.4*</td>
</tr>
</tbody>
</table>

Values are means ± SD. CHF, chronic heart failure; ACE, angiotensin-converting enzyme; AR, angiotensin-receptor; V_{O2p}, pulmonary oxygen uptake; GET, gas-exchange threshold; HR, heart rate; SV, stroke volume; Q_T, cardiac output. *$P < 0.05$ (nonpaired t-test).

40–50% of the ΔV_{O2peak}-GET (between the gas-exchange threshold) was defined as the time point at which subjects signaled to stop exercising or could not maintain the required pedaling rate for 10 s despite being encouraged by the investigators. Subjects avoided caffeine, alcohol, or heavy meals before testing.

Measurements

Exercise tests. The tests were performed on an electronically braked cycle ergometer (Corival 400, Lode, The Netherlands) at 60 rpm and they were preceded by an unloaded baseline pedaling at 0 W for 2 min. V_{O2p} (ml/min), V_{CO2p} (pulmonary carbon dioxide output, ml/min), minute ventilation (Ve, l/min), and end-tidal partial pressures (PET) for O2 and CO2 (mmHg) were measured breath by breath using a computer-based system (Cardio2 System, Medical Graphics). Gas-exchange variables measured during the incremental test were averaged every 15 s. V_{O2peak} was defined as the highest value achieved during the test and compared with Brazilian standards (50). Heart rate (HR, bpm) was determined by using the R-R interval from a 12-lead electrocardiogram. Arterial oxyhemoglobin saturation was determined by pulse oximetry ($\%$: POX 010–340, Mediad) with its analog signal being directed to the system. Subjects were also asked to rate their “shortness of breath” at exercise cessation using the 0–10 Borg’s category-ratio scale. The V_{O2peak} was estimated by the gas-exchange method, inspecting visually the inflection point of V_{O2p}, with regard to V_{O2p} (modified V-slope) and secondarily confirmed by the ventilatory method when Ve/V_{O2p} and PetCO2 increased while Ve/V_{CO2p} and PetO2 remained stable. The reading was performed independently by two experienced observers without knowledge of other results or subject identities.

Skeletal muscle oxygenation. Skeletal muscle oxygenation profiles of the left vastus lateralis were evaluated with a commercially available NIRS system (Hamamatsu NIRO 200, Hamamatsu Photonics).
The theory of NIRS has been described in detail elsewhere (21). Briefly, one fiber optic bundle carried the NIR light produced by the laser diodes to the tissue of interest while a second fiber optic bundle returned the transmitted light from the tissue to a photon detector in the spectrometer. The intensity of incident and transmitted light were recorded continuously and, along with the relevant specific extinction coefficients, used to measure changes in the oxygenation status of Hb and Mb. A set of optodes was placed on the belly of the vastus lateralis muscle midway between the lateral epicondyle and greater trochanter of the femur. The optodes were housed in an optically dense plastic holder, thus ensuring that the position of the optodes, relative to each other, was fixed and invariant. The optode assembly was secured on the skin surface with tape and then covered with an optically dense, black vinyl sheet, thus minimizing the intrusion of extraneous light and loss of NIR light.

The variables assessed by NIRS are the concentration (denoted by square brackets) of oxygenated, deoxygenated, and total Hb. Among the NIRS variables, several laboratories have adopted the [deoxy-Hb+Mb] signal as the preferred indicator of changes in muscle microvascular oxygenation during exercise (11, 14, 23, 28). The [deoxy-Hb+Mb] response to exercise is then considered a proxy of fractional O2 extraction in the microcirculation, reflecting the balance between O2 delivery and utilization. The device used herein did not measure the reduced-scattering of the tissue (36), preventing determination of absolute values of [deoxy-Hb+Mb] (in μM). Therefore, values were recorded as a delta (Δ) from baseline in units of micromolar per centimeter and expressed relative (%) to the amplitude of variation from baseline to the steady state.

Central hemodynamics. Qt (l/min) and stroke volume (SV, liters) were measured noninvasively throughout the constant work rate test by impedance cardiography (PhysioFlow PF-05, Manatec Biomedical). The PhysioFlow device and its methodology have been thoroughly described elsewhere (10). This methodology is different from previously used impedance systems as its algorithm does not require basal thoracic impedance measurement (Z0). Before each exercise test, the system was autocalibrated taking into consideration age, stature, body mass, and blood pressure values. Signal quality was verified by visualizing the electrocardiography (ECG) tracing and its first derivative (dECG/dt) and the impedance waveform (ΔZ) with its first derivative (dZ/dt). In preliminary experiments the coefficient of variation for changes in Qt and SV during exercise were 3.3 and 4.1%, respectively. In these preliminary trials the changes in Qt measured by impedance cardiography were consistent with those predicted from VO2p values using the submaximal Qt-VO2p relationship described in CHF patients (8).

Kinetics analysis. The breath-by-breath VO2p, Δ(deoxy-Hb+Mb) and hemodynamic (Qt, SV, and HR) data were time aligned to the start of exercise and interpolated second by second. The kinetics of these responses were determined by nonlinear regression using a least square technique (Marquardt-Levenberg, SigmaPlot 10.0, Systat Software). The VO2p responses to exercise in the intensity domain used in our investigation are characterized by the presence of a slow component (2, 56). We checked the absence of the onset or emergence of the slow component in the first 180 s after the start of exercise by certifying that the monoexponential fit (Eq. 1) did not demonstrate a discernible departure from the measured response profile, i.e., maintenance of the flat profile of the residual plot. If the slow component was not discernible, we opted to fit VO2p from 30 s of baseline pedaling to the steady-state value; otherwise, data were fitted from 30 s of baseline pedaling to 180 s after the onset of exercise. For Δ(deoxy-Hb+Mb) kinetics the analyses were conducted on data from 30 s of baseline cycling to the steady-state response to minimize distortion of the curve-fitting seen when longer periods are analyzed. Theoretical (22) and empirical studies (11, 14, 23, 28) suggest that the primary phase of the Δ(deoxy-Hb+Mb) response is complete within this time window.

The model used for fitting the kinetic response of VO2p and Δ(deoxy-Hb+Mb) was

\[Y(t) = [Y]_0 + A_1 (1 - e^{-(t-TD)/\tau}) + A_2 (1 - e^{-(t-TD)/\tau}) \]

where \(b \) refers to baseline unloaded cycling and \(A, TD, \) and \(\tau \) are the amplitude, time delay, and time constant of the exponential response, respectively. For VO2p, analysis we deleted the data relative to the cardiodynamic phase, which duration was individually determined according to standard procedures (2). Therefore, \(TVO_2 \) represents the time course of the primary component — an estimate of the muscle VO2 kinetics (25) (see Methodological Considerations and Interpretative Issues). The overall kinetics of \(\Delta \) (deoxy-Hb+Mb) (\(t \)-time to reach 63% of the response following the onset of exercise) were determined by the mean response time (MRT = \(\tau + TD \)). To relate the kinetics of O2 utilization to the dynamics of (estimated) fractional O2 extraction, we calculated the ratio \(rVO_2p/MRT-\Delta \) (deoxy-Hb+Mb). Therefore, the higher this ratio, the faster the \(\Delta \) (deoxy-Hb+Mb) kinetics in relation to VO2p dynamics, suggesting slower adaptation of QO2new (11). For the hemodynamic data, we opted to calculate the individual half-time (td/2, s) as the low signal-to-noise ratio for SV and Qt precluded an adequate monoexponential fitting in some patients. This parameter was defined as the time in which the physiological response reached half of the difference between 180 s and the onset of exercise (SigmaPlot 10.0). An estimate of MRT was then obtained as \(tm/2 \times 1.44 \).

Based on previous findings with other disease populations (3, 11), we systematically looked at the presence or not of an “overshoot” in \(\Delta \) (deoxy-Hb+Mb) after the initial “fast” response (see RESULTS). A two-component, monoexponential model was applied to these data:

\[Y(t) = [Y]_0 + A_1 (1 - e^{-(t-TD)/\tau}) - A_2 (1 - e^{-(t-TD)/\tau}) \]

where the subscripts 1 and 2 correspond to the two sequential components (upward and downward, respectively). This model was applied to adequately define the duration of the upward component, i.e., TD2. Considering, however, the uncertainties about the actual physiological meaning of the downward component, only the describing parameters of the upward component were considered for statistical analysis. Assuming that a larger area under the \(\Delta \) (deoxy-Hb+Mb) overshoot would be conceptually similar to a greater “undershoot” in the PO2mv (22, 23, 57), the former variable was used as an additional index of impaired microvascular O2 delivery. On preliminary trials, the coefficient of variation for the kinetic parameters of the \(\Delta \) (deoxy-Hb+Mb) response ranged between 5–11% (1st test = 2nd test mean bias and range: \(\tau = 0.3 \) s (–0.3 s to 0.8 s) and TD = 0.1 s (–0.4 to 0.5 s)).

Statistical Analysis

Results were summarized as means ± SD. To contrast between-subject resting and exercise responses, nonpaired t or Mann-Whitney tests were used as appropriate. Pearson’s product moment correlation was used to assess the level of association between continuous variables. The level of statistical significance was set at \(P < 0.05 \) for all tests.

RESULTS

Subject Characteristics and Maximal Exercise Capacity

There were no significant differences on anthropometric attributes in CHF patients vs. age-matched controls (Table 1). Etiology of CHF was mostly nonischemic and patients had severe LV dysfunction at rest. In contrast, peak work rate and peak VO2p were only moderately reduced with eight patients being classified as Weber’s class II and two patients as class III. The GET was identified in all subjects, and patients had lower \(\text{VO}_{2\text{GET}} \) than controls (\(P < 0.05 \)). Patients showed
impaired chronotropic responses and lower tolerance to constant work-rate exercise (Tlim) compared with controls (Table 1; \(P < 0.01 \)).

Pulmonary Gas Exchange and Cardiovascular Dynamics

The kinetics of \(\dot{V}O_2p \) and hemodynamic responses were slower in patients than controls (Figs. 1 for \(\dot{V}O_2p \) and \(Q_T \); Table 2). In a subgroup of subjects in whom the tests were repeated (6 patients and 6 controls), the coefficient of variation for \(\tau \dot{V}O_2p \) and \(t_{1/2} Q_T \) averaged 8.4 and 9.9%, respectively. Estimated MRT-\(Q_T \) was consistently slower than \(\tau \dot{V}O_2p \) in both groups (\(P < 0.05 \)) (Fig. 1; Table 1). MRT-HR was particularly impaired in patients compared with controls (CHF-controls/controls \(\times 100 = 84.7 \pm 32.3 \% \) and 34.7 \(\pm 19.5 \% \) for HR and SV responses, respectively). There was a significant relationship between \(\tau \dot{V}O_2p \) and \(t_{1/2} Q_T \) only in patients (\(R = 0.79 \)); in addition, both variables were related to Tlim in CHF patients (\(R = -0.81 \) and \(R = -0.69 \), respectively; \(P < 0.05 \)) but not in controls.

Muscle Oxygenation and Estimated \(Q_{O2_{mv}} \)

The \(\Delta [\text{deoxy-Hb+Mb}] \) response displayed a region in which the signal remained stable or decreased transiently with similar duration in both groups (time delay). After this phase, \(\Delta [\text{deoxy-Hb+Mb}] \) increased rapidly with a response kinetics that were related to \(t_{1/2} Q_T \) in CHF patients (\(R = 0.79 \)); in addition, both variables were related to Tlim in CHF patients (\(R = -0.81 \) and \(R = -0.69 \), respectively; \(P < 0.05 \)) but not in controls.

Table 2. Kinetic parameters for \(\dot{V}O_2p \), \(\Delta [\text{deoxy-Hb+Mb}] \), and \(Q_T \) by transthoracic impedance in healthy subjects and optimally treated patients with CHF

<table>
<thead>
<tr>
<th>(\dot{V}O_2p)</th>
<th>Controls, (n = 11)</th>
<th>CHF, (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline, ml/min</td>
<td>(484 \pm 123)</td>
<td>(409 \pm 108)</td>
</tr>
<tr>
<td>Amplitude, ml/min</td>
<td>(908 \pm 134)</td>
<td>(584 \pm 149^*)</td>
</tr>
<tr>
<td>(\tau), s</td>
<td>(40.5 \pm 11.3)</td>
<td>(65.3 \pm 16.7^*)</td>
</tr>
<tr>
<td>(T_{D}), s</td>
<td>(10.8 \pm 8.7)</td>
<td>(9.5 \pm 10.1^*)</td>
</tr>
<tr>
<td>(\Delta [\text{deoxy-Hb+Mb}])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline, %</td>
<td>(0.1 \pm 2.1)</td>
<td>(-0.4 \pm 1.9)</td>
</tr>
<tr>
<td>Amplitude, %</td>
<td>(96.4 \pm 7.5)</td>
<td>(114.2 \pm 9.3^*)</td>
</tr>
<tr>
<td>(\tau), s</td>
<td>(9.3 \pm 1.6)</td>
<td>(5.9 \pm 1.7^*)</td>
</tr>
<tr>
<td>(T_{D}), s</td>
<td>(10.7 \pm 1.9)</td>
<td>(10.0 \pm 2.0)</td>
</tr>
<tr>
<td>(Q_T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline, l/min</td>
<td>(6.5 \pm 1.9)</td>
<td>(4.9 \pm 1.7^*)</td>
</tr>
<tr>
<td>Amplitude, l/min</td>
<td>(5.2 \pm 1.5)</td>
<td>(3.1 \pm 1.3^*)</td>
</tr>
<tr>
<td>(t_{1/2}), s</td>
<td>(40.2 \pm 7.5)</td>
<td>(70.7 \pm 13.0^*)</td>
</tr>
</tbody>
</table>

Values are means \(\pm \) SD. \(\Delta [\text{deoxy-Hb+Mb}] \) changes in deoxyhemoglobin+myoglobin by near-infrared spectroscopy; \(TD \), time delay; \(\tau \), time constant; \(t_{1/2} \), half-time. \(\Delta [\text{deoxy-Hb+Mb}] \) values expressed relative to steady-state, baseline variation. *\(P < 0.05 \) (nonpaired \(t \)-test).

DISCUSSION

This is the first study, to our knowledge, to investigate whether the dynamic matching of (estimated) \(Q_{O2_{mv}} \) and \(\dot{V}O_2p \) at the onset of heavy-intensity exercise is impaired in optimally treated (17, 32) humans with CHF. We found that phase II response was found in 7 of 10 patients but in no control (see Fig. 2 for a representative patient).

There was a significant relationship between \(\tau \dot{V}O_2p/QRT-\Delta [\text{deoxy-Hb+Mb}] \) and the area under the overshoot in these patients (\(R = 0.74; \ P < 0.05 \)). Importantly, \(\tau \dot{V}O_2p/QRT-\Delta [\text{deoxy-Hb+Mb}] \) was also significantly related to both \(t_{1/2} Q_T \) and Tlim (Fig. 3) in CHF patients.

Fig. 1. Mean response time of pulmonary \(\dot{V}O_2p \) (\(\dot{V}O_2p \)), cardiac output (\(Q_T \)), and changes in deoxy-hemoglobin+myoglobin measured by near-infrared spectroscopy (\(\Delta [\text{deoxy-Hb+Mb}] \); -fractional \(O_2 \) extraction) at the onset of heavy-intensity exercise in age-matched sedentary controls (shaded bars) and optimally treated patients with chronic heart failure (CHF) (solid bars). Note that the kinetics of \(\dot{V}O_2p \) and \(Q_T \) were slower in CHF patients; in contrast, patients presented with faster \(\Delta [\text{deoxy-Hb+Mb}] \) dynamics compared with healthy controls, suggesting impaired microvascular \(O_2 \) delivery. Data are means (SD). *\(P < 0.05 \) for between-group comparisons; †\(P < 0.05 \) for within-group comparisons of \(\dot{V}O_2p \) vs. \(Q_T \); *\(P < 0.05 \) for within-group comparisons of \(\Delta [\text{deoxy-Hb+Mb}] \) vs. \(\dot{V}O_2p \) and \(Q_T \).

Fig. 2. \(\Delta [\text{deoxy-Hb+Mb}] \) at the onset of heavy-intensity exercise in a representative age-matched control (CTL) and an optimally treated patient with CHF. Values are expressed relative to the amplitude of variation from baseline to the steady state. Note the signal “overshoot” after a more rapid rate of change in \(\Delta [\text{deoxy-Hb+Mb}] \) [i.e., lower mean response time (\(MRT = \tau + TD \))] in the CHF patient, suggesting a faster kinetics of fractional \(O_2 \) extraction and impaired microvascular \(O_2 \) delivery. TD, time delay; \(\tau \), time constant.
Mechanisms for Slower \(V_{O2p} \) Kinetics in Humans With CHF

It has long been demonstrated that the dynamics of \(V_{O2p} \) are slowed in patients with CHF (7, 61) and related to a number of clinical and functional outcomes (1, 12, 48, 63). In this context, derangements of convective and diffusive \(O_2 \) delivery to mitochondria (i.e., \(O_2 \) transport) and/or impaired muscle utilization (i.e., intramyocyte metabolic inertia) may account for the prolonged \(V_{O2p} \) kinetics (56). Potential mechanisms leading to impaired \(O_2 \) delivery include the central hemodynamic effects of CHF (46, 62), heightened neurohumoral activation (16, 49), impaired nitric oxide- (24) and endothelium-dependent (4) vasodilation, and/or impaired blood flow redistribution from the nonexercising tissues to the exercising muscles (47).

Conversely, CHF is also associated with profound bioenergetic disturbances in the skeletal muscles that could also limit the rate of increase in \(V_{O2p} \) (15). For instance, \(V_{O2p} \) kinetics are not always accelerated in heart transplant recipients (39) and remain abnormal during small muscle mass exercise in which the central cardiovascular constraints are no longer operative (33). In addition, increased \(q_T \) after cardiac reinnervation has not been consistently associated with faster \(V_{O2p} \) kinetics (43). Further evidence for a relevant role of intramuscular factors was provided by Zelis et al. (66), who found slower rates of NIRS-measured muscle deoxygenation during arterial occlusion in patients with severe CHF and by the findings of Diederich et al. (18) and Behnke et al. (6), who described slower, rather than faster, rates of decrease in \(P_{O2_{mv}} \) in rat with severe vs. moderate CHF.

In the clinical context, this issue is further complicated by the potential effects of contemporary pharmacological treatment of CHF on the main determinants of \(O_2 \) delivery in patients with CHF. More specifically, ACEIs and ARBs plus \(\beta \)-blockers have been found to be effective in improving CHF-related endothelial dysfunction (49, 55) and reduce excessive sympathetic outflow to the limbs (16, 19) with positive effects on muscle blood flow (52, 55). Collectively, these data might indicate that such improvements in CHF treatment may have enhanced the dynamics of muscle \(O_2 \) delivery to an extent that intramuscular metabolic inertia would become the main factor limiting \(V_{O2p} \) kinetics. Several variables measured and estimated in our study suggest that this may not be the case during exercise of heavy intensity in nontrained men with stable CHF.

Microvascular \(O_2 \) Delivery During Exercise in CHF

Our data demonstrated that CHF patients showed faster kinetics of muscle microvascular fractional \(O_2 \) extraction (as estimated by \(\Delta[\text{deoxygen-Hb+Mb}] \)) and slower kinetics of phase II than controls, suggesting that \(Q_{O2_{mv}} \) adapted at a slower rate in patients (14, 22, 23, 28). Moreover, the ratio \(\tau V_{O2p}/\text{MRT-}\Delta[\text{deoxygen-Hb+Mb}] \) was closely related to the overall kinetics of central cardiovascular adjustments and exercise tolerance (Fig. 3). These results are of particular clinical relevance because the patients have been therapeutically optimized for at least 3 yr (17, 32) and the confounding effects of training status and comorbidities (such as anemia and diabetes) have been carefully avoided. It is appropriate, however, to point out that the order of speed of responses was similar in patients and controls, i.e., \(\Delta[\text{deoxygen-Hb+Mb}], V_{O2p} \), and \(q_T \) (Fig. 1). Consequently, it is conceivable that insufficient rates of muscle \(O_2 \)
delivery also limited the rate of increase in \(V_{O_2} \), albeit in a lesser extent, in our middle-aged to aged controls (6, 20).

NIRS is a noninvasive technique that allows continuous measurement of key determinants of peripheral muscle oxygenation during exercise (21). The time course of \(\Delta[\text{deoxy-Hb+Mb}] \) in particular reflects the local balance between \(O_2 \) delivery and uptake in the area under investigation (14, 22, 23, 28). Several studies have shown that \(\Delta[\text{deoxy-Hb+Mb}] \) provides a surrogate of fractional \(O_2 \) extraction (see Methodological Considerations and Interpretative Issues), and its measurement in parallel with (muscle) phase II \(V_{O_2p} \) kinetics can give useful inferences regarding \(Q_{O_2mv} \) via the Fick principle (14, 22, 23, 28). In this context, it is widely recognized that the muscle hemodynamic response at the onset of exercise is characterized by a fast “phase I” response related to the mechanical effect of muscle contraction (i.e., muscle pump) and, probably, rapid vasodilation and a slower “phase II” matched with metabolic demand, resulting from metabolic feedback control (60). In contrast, muscle \(V_{O_2} \) response appears to be well characterized by a single monoexponential function from the start of exercise (2). Therefore, the resulting response of fractional \(O_2 \) extraction (\(\sim \Delta[\text{deoxy-Hb+Mb}] \)) encompass an early delay where \(O_2 \) delivery meets (or exceeds) demand (TD) and a rapidly increasing response when the dynamics of capillary flow blood is slower than the rate of change in \(O_2 \) utilization (57). In this construct, the overall \(\Delta[\text{deoxy-Hb+Mb}] \) kinetics are expected to be inversely related to the dynamics of \(Q_{O_2mv} \) (14, 22, 23, 28).

In the present study, CHF patients showed faster overall \(\Delta[\text{deoxy-Hb+Mb}] \) kinetics (i.e., lower MRT values) due to a more rapid rates of change (\(\tau \)) despite unaltered TD values. Consequently, it seems that the phase II of microvascular blood flow has been particularly impaired in our patients (22, 23). In line with this notion, we observed a transient overshoot in the \(\Delta[\text{deoxy-Hb+Mb}] \) response after the initial “fast” response in most CHF patients (Fig. 2), suggesting that estimated fractional \(O_2 \) extraction increased above the steady-state level because of impaired muscle blood flow relative to \(V_{O_2} \) (3, 22, 23, 57). Interestingly, this pattern of response is qualitatively similar to the undershoot in the capillary \(P_{O_2} \) responses previously observed in the exercising muscle of diabetic (54) and CHF animals (5, 6, 18, 35) and identical to the \(\Delta[\text{deoxy-Hb+Mb}] \) profiles described in patients with Type 2 diabetes (3) and chronic obstructive pulmonary disease (11). This specific pattern of response is thought to be related to a transient lowering of capillary \(P_{O_2} \) that seems to be large enough to reduce the diffusion gradient from capillary to mitochondria thereby impairing \(O_2 \) flux and constraining the rate of increase in muscle \(V_{O_2} \) (22, 23, 57).

Our results add novel information to previous studies that used NIRS-based measurements during incremental (65) or small muscle mass exercise (44) in patients with CHF. In fact, the single study that has looked at the kinetics of \(\Delta[\text{deoxy-Hb+Mb}] \) at the onset of moderate-intensity exercise (40) evaluated CHF patients after heart transplantation. Interestingly, these authors did not find significant differences in \(\Delta[\text{deoxy-Hb+Mb}] \) kinetics in recipients vs. normal controls, despite slower \(V_{O_2p} \) kinetics in patients (40). These findings suggest that the metabolic abnormalities in the skeletal muscles were the main mechanism leading to slower \(V_{O_2p} \) kinetics in their subjects which is at marked variance with the present findings in less severe patients. Conversely, our data are consistent with previous animal studies that suggest that the behavior of \(P_{O_2mv} \) (and, conceivably, \(\Delta[\text{deoxy-Hb+Mb}] \) on the inverse direction) is critically influenced by disease severity in rats with CHF, i.e., faster \(P_{O_2mv} \) kinetics associated with a signal undershoot in moderate CHF and slower \(P_{O_2mv} \) dynamics without undershoots in more advanced CHF (6, 18). These findings were interpreted as evidence that severe CHF has been associated with proportional impairments in \(Q_{O_2mv} \) and muscle oxidative metabolism with the net effect being slower rather than faster rates of change in \(P_{O_2mv} \) (6, 18).

There are several putative explanations by the persistently abnormal \(Q_{O_2mv} \) kinetics at the onset of exercise despite optimal medical therapy. Firstly, \(Q_{T} \) kinetics were significantly slower in CHF patients than controls (Fig. 1, Table 2). In this context, the strong cardiac \(\beta_{2} \)-blocking effect of carvedilol was likely to be instrumental (19) because MRT-\(HR \) was \(\sim 80\% \) lower in patients than controls. A study with “old,” nonselective \(\beta \)-blockers did find a slowing effect on-exercise \(V_{O_2p} \) kinetics (30), and Guazzi and Agostoni (29) reported that carvedilol failed to accelerate \(V_{O_2p} \) kinetics in moderately impaired patients with CHF. In fact, despite positive effects on mortality (53), most of the large randomized controlled trials actually failed to demonstrate a significant effect of newer \(\beta \)-blockers upon submaximal exercise tolerance (19). The positive effects of carvedilol-related \(\alpha \)-adrenergic blockade on vascular tone might have also vanished over time (37). Note-worthy, patients’ therapy had been optimized according to current clinical guidelines (17, 32) that do not include a formal assessment of pulmonary gas-exchange kinetics to titrate the prescribed doses of medication. Consequently, we cannot rule out that would be necessary higher doses of ACEIs and ARBs to counterbalance the potentially deleterious effects of \(\beta \)-blockade in the \(Q_{O_2mv} \) dynamics at the on-exercise transient. Secondly, despite potential improvements in central cardiovascular performance, pharmacological treatment may have failed to ameliorate the impairment in muscle microvascular function in CHF (49, 55). In fact, a recent study combining NIRS and \(^{31} \text{P} \) magnetic resonance spectroscopy found that the recovery kinetics of [deoxy-Hb+Mb] were slower than that of phosphocreatine after single-leg extension exercise in well-treated New York Heart Association class II–III patients (34). These findings suggest that impaired microvascular function might have contributed to limit muscle \(O_2 \) availability because the exercise paradigm was not associated with substantial increases in the central cardiovascular demands. Finally, patients were submitted to supra-GET exercise, thereby predisposing \(V_{O_2p} \) kinetics to be delivery limited (56). However, this exercise intensity domain was deemed the most adequate to test the main study hypothesis since it would pose a higher-than-usual burden to the cardiovascular system under treatment. In fact, despite the exercise test has been performed at submaximal intensities, \(V_{O_2p} \) at \(T_{lim} \) was quite similar to peak \(V_{O_2p} \) (Table 1), suggesting the development of a marker of heavy-intensity exercise, i.e., the \(V_{O_2p} \) “slow” component (56).

Methodological Considerations and Interpretative Issues

Because of the cross-sectional and noninvasive nature of the present investigation, several methodological and interpreta-
tive aspects merit further clarification. We, like others (14, 22, 23, 28), assumed that the kinetics of Δ[deoxy-Hb+Mb] measured at a single site reflects the time course of muscle fractional O_2 extraction following the onset of exercise. However, there exists substantial heterogeneity on the distribution of muscle blood flow and V_{O_2} (36) that might be more relevant in the poorly perfused muscles of CHF patients. Consequently, it is unlikely that a single-site evaluation provides a full depiction of the complete range of individual intramuscular Q_{O_2mv}-to-V_{O_2} relationships. It should also be acknowledged that the lowering effect of CHF on capillary O_2 driving pressure is less prominent in fast- rather than slow-twitch fibers (5). Considering the higher proportion of fast-twitch fibers in the quadriceps of the elderly (6) and patients with CHF (5), we may have underestimated the speeding effect of CHF on the rate of increase in muscle fractional O_2 extraction.

A key argument in favor of the Δ[deoxy-Hb+Mb] response as a noninvasive surrogate of fractional O_2 extraction dynamics is the similar characteristics of Δ[deoxy-Hb+Mb] changes compared with fractional O_2 extraction dynamics calculated in computer simulations (23) and measured in skeletal muscles (27). However, no previous study has confirmed these assumptions in patients with CHF. Another point of concern is the potential interpopulation differences in the relative contribution of Mb to the Δ[deoxy-Hb+Mb] signal (42, 64), which might have also impacted on the magnitude and rate of change in muscle deoxygenation. In this context, Lai et al. (38), using a systems biology approach, reported that the Mb contribution to the whole NIRS signal is particularly relevant during hypoxia compared with normoxia. Assuming that the skeletal muscles contract under more hypoxic conditions in CHF patients than healthy controls, we cannot rule out that the Mb contribution to Δ[deoxy-Hb+Mb] was higher in patients. However, Mb has lower P_{50} values than Hb, an effect that would tend to slow, not accelerate (Table 2, Fig. 2), the rate of muscle deoxygenation in the CHF patients.

We used the kinetics of the primary component of V_{O_2sp} response as an indicator of the muscle V_{O_2} response (2, 25). However, it should be acknowledged that the fitting of a single exponential, though statistically justifiable, is not evidence of similar metabolic mechanisms in the two populations, especially during heavy-intensity exercise. More specifically, it is unlikely that the relative contribution of anaerobic glycolysis to ATP regeneration was equivalent in patients and controls (56). We also recognize that slowing of muscle blood flow may create a temporal dissociation between muscle and pulmonary V_{O_2} kinetics, with the V_{O_2sp} response becoming faster than the muscle V_{O_2} dynamics because of changes in the leg-to-lung transit delay (2). Accordingly, we may have underestimated the slowness of muscle V_{O_2} kinetics in CHF patients performing heavy-intensity exercise. Our investigative approach, therefore, used noninvasive methods and was based on several assumptions; consequently, we could only infer the rate of muscle O_2 delivery.

There are some clinical considerations that should be stressed to avoid a widespread extrapolation of our results. Several investigators reported that the likelihood of severe intramyocyte disturbances is increased in patients with end-stage disease (33, 40) and rats with severe CHF (6, 18). Considering that our patients were only moderately impaired (despite severe LV dysfunction by echocardiography) (Table 1), it remains to be tested whether the present results hold true for humans with more advanced disease. However, our sedentary patients had never been submitted to cardiac rehabilitation, predisposing them to severe impairment in muscle oxidative metabolism. We also admit that the response overshoot in Δ[deoxy-Hb+Mb] (or P_{O_2mv} undershoot) is more likely to be found in older subjects (6, 20) than those evaluated in the present study (Table 1). Therefore, our results should be viewed under the perspective that the aging process underlies the behavior of Δ[deoxy-Hb+Mb] and V_{O_2sp} in both groups and further studies are warranted to confirm the present findings in younger CHF patients. In relation to the fitting approach to Δ[deoxy-Hb+Mb] overshoot, it needs to be stressed that a single monoexponential model was used merely for convenience of comparisons and a higher-order model might have better described the observed response profile (Fig. 2).

According to current guidelines, no patient in the present study had clinical indication for resynchronization therapy or LV assist device; nevertheless, it remains to be tested whether the add-on therapy with these nonpharmacological strategies would positively impact on (estimated) Q_{O_2mv} kinetics. Finally, care should be taken to extrapolate our results for patients with CHF secondary to ischemic heart disease since CHF etiology may impact on the determinants of exercise tolerance in this patient population (13).

Conclusions

The dynamic matching between O_2 delivery to, and O_2 uptake by, the peripheral muscles is significantly impaired at the transition to heavy-intensity exercise in patients with CHF who had been adequately treated with the best-available pharmacological therapy. These abnormalities are closely related to the derangements on the central cardiovascular adjustments to exertion. Our data, therefore, indicate that despite the remarkable advances in clinical management of CHF, disturbances in the cardiocirculatory responses still play a prominent role in limiting V_{O_2sp} kinetics and tolerance to heavy-intensity exercise in humans with naturally occurring forms of the disease.

ACKNOWLEDGMENTS

The authors thank Dr. Leonardo Ferreira (University of Kentucky, Lexington, KY) for intellectual input and useful commentaries on the topic. They are also grateful to all colleagues from the Pulmonary Function and Clinical Exercise Physiology Unit [Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Brazil] for friendly collaboration.

REFERENCES

ON-EXERCISE MUSCLE DEOXYGENATION KINETICS IN CHF

