Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation

Philipp Heusch,1 Stephanie Aker,1 Kerstin Boengler,1 Elisabeth Deindl,2 Anita van de Sand,1 Kristina Klein,1 Tiensh Rassaf,3 Ina Konietzka,1 Adrian Sewell,4 Sara Menazza,5 Marcella Canton,5 Gerd Heusch,1 Fabio Di Lisa,5 and Rainer Schulz1

1Institute for Pathophysiology, University of Essen Medical School, Essen; 2Walter-Brendel-Centre of Experimental Medicine, University of Munich, Munich; 3Department of Medicine, University of Düsseldorf, Düsseldorf; and 4Department of Paediatrics, University Children’s Hospital Frankfurt, Frankfurt, Germany; and 5Department of Biomedical Sciences, University of Padova, Padova, Italy

Submitted 2 November 2009; accepted in final form 25 April 2010

Heusch P, Aker S, Boengler K, Deindl E, van de Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, Di Lisa F, Schulz R. Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol 299: H446–H453, 2010. First published May 28, 2010; doi:10.1152/ajpheart.01034.2009.—Our objective was to address the importance of increased iNOS expression and its contribution to contractile dysfunction in heart failure (HF). Excessive NO formation is thought to contribute to contractile dysfunction; in macrophages, increased iNOS expression is associated with increased arginase expression, which competes with iNOS for arginine. With substrate limitation, iNOS may become uncoupled and produce reactive oxygen species (ROS). In rabbits, HF was induced by left ventricular (LV) pacing (400 beats/min) for 3 wk. iNOS mRNA [quantitative real-time PCR (qRT-PCR)] and protein expression (confocal microscopy) were detected, and arginase II expression was quantified with Western blot; serum arginine and myocardial nitrite and nitrate concentrations were determined by chemiluminescence, and protein S-nitrosylation with Western blot. Superoxide anions were quantified with dihydroethidine staining. HF rabbits had decreased systolic fractional shortening (11.1 ± 0.7% in sham; P < 0.05). Myocardial iNOS mRNA and protein expression were increased, however, not associated with increased myocardial nitrite or nitrate concentrations or protein S-nitrosylation. The serum arginine concentration was decreased (124.3 ± 5.6 mmol/l in sham; P < 0.05). Myocardial iNOS mRNA and protein expression were increased; however, not associated with increased myocardial nitrite or nitrate concentrations or protein S-nitrosylation. The serum arginine concentration was decreased (124.3 ± 5.6 mmol/l in sham; P < 0.05). Inhibition of iNOS with 1400W attenuated superoxide anion formation and contractile dysfunction in failing hearts. Concomitant increases in iNOS and arginase expression result in HF (62).

Whereas inducible nitric oxide (NO) synthase (iNOS) is not detectable in normal cardiomyocytes, iNOS expression is increased in failing hearts in both animal models (2) and patients (18, 24, 58). Increased iNOS expression results from increased cardiomyocyte stretch secondary to protein kinase activation and, through positive feedback, from increased NO concentration (37).

Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation

infarction or cardiomyocyte apoptosis), alterations in excitation-contraction coupling (34, 48) and oxidative modification of contractile myofilaments contribute to myocardial dysfunction (8, 9, 15, 28, 35).

NO mediates its effects either through cGMP and protein kinase G (52, 56) or more directly through protein nitrosylation (49). In the heart, NO reduces β-adrenergic responses (19, 22, 65), although that is controversial (50), and the l-type Ca-channel current (20), inhibits the mitochondrial respiratory chain (11, 14, 29, 32), and increases the mitochondrial permeability transition pore opening probability (53), thereby increasing cardiomyocyte apoptosis (3).

However, the contribution of increased iNOS expression to HF development has been questioned in transgenic mice with chronic cardiac-specific upregulation of iNOS (25, 44); only in the presence of a simultaneous knockout of myoglobin did iNOS overexpression result in HF (62).

In murine macrophages, increased iNOS expression is associated with a concomitant increase in arginase expression (59). Recent data from wound healing studies in rats suggest that there might be a self-limiting negative feedback cycle, in that increased iNOS-derived NO increases arginase II activity, which subsequently reduces L-arginine concentration and thereby limits NO production (66). Limitation of substrate availability also leads to uncoupling of iNOS with ultimately reactive oxygen species (ROS) formation (49, 60). Increased ROS formation induces myofibrillar oxidation and subsequently contributes to the development of contractile dysfunction (8, 9). An interaction between iNOS and arginase has not yet been studied in the failing heart.

We have now used our established model of pacing-induced HF in rabbits to assess both iNOS and arginase protein expression in normal and failing hearts. It is particularly the arginase II isoform that is expressed in cardiomyocyte mitochondria (57). Also, we assessed neuronal NOS (nNOS) mRNA and protein expression, NO and superoxide anion formation, as well as protein S-nitrosylation along with contractile function in failing rabbit hearts. To address the functional importance of increased iNOS expression and its contribu-

THE INCIDENCE AND PREVALENCE of heart failure (HF) continue to increase (6, 40, 46), largely because patients survive myocardial infarction due to improved medical treatment (36). Apart from postmyocardial infarction remodeling, HF also results from hypertension (39), valvular disease (10), idiopathic cardiomyopathy or myocarditis (41), and occasionally tachycardia (45). Apart from the loss of cardiomyocytes (postmyocardial
tion to superoxide anion formation, iNOS inhibition was achieved with 1400W (21).

METHODS

The present study was approved by the bioethical committee of the district of Düsseldorf, Germany, and the investigation conforms with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH publication no. 85-23, revised 1996).

Experimental model and protocols. Male Chinchilla bastard rabbits (Charles River, Kisslegg, Germany) received a standard chow (ssniff, Soest, Germany) that contained nitrate, but this chow was the same for all experimental groups. Rabbits with an age of 18–20 wk weighing 3–4 kg were anesthetized, initially with ketamine (50 mg/kg)-xylazine (3 mg/kg) and subsequently with propofol (12–25 ml/h)-fentanyl (0.003 mg/kg), intubated, and ventilated using a Dräger UV-2 ventilator (Lübeck, Germany) with 70% room air and 30% oxygen. After a left thoracotomy, a pacing lead was sutured onto the apical region of the left ventricle (LV). The pacing lead was connected to a pacemaker (Medtronic, Düsseldorf, Germany), which was implanted subcutaneously. The chest was closed in layers and evacuated with a Bülau drainage. The tracheal tube was removed after spontaneous breathing was assured. The rabbits were placed on an antibiotic regimen (12 h p.i., 4 mg/kg ampicillin, 12 h p.o., 12 mg/kg cephalaxin (3 mg/kg) and subsequently with propofol (12–25 ml/h)-fentanyl (12–25 ml/h)) for 1 wk (HF1; control), 2 wk (HF2; sham), or 3 wk (HF3; HF) after surgery and were followed for the same 3-wk time frame as HF rabbits. Echocardiography was performed on a weekly basis. There was no change in any measured parameter throughout the observation period, and data after 3 wk are presented in sham rabbits.

iNOS inhibition with 1400W. Seven rabbits received the iNOS inhibitor 1400W (1 mg·kg⁻¹·h⁻¹) at the onset of pacing, and 6 rabbits received placebo. Higher concentrations of 1400W (≤5 mg·kg⁻¹·day⁻¹) over 3 wk induced gastrointestinal hemorrhage and necrosis even in sham rabbits. Twelve sham rabbits served as controls, each with 1400W or placebo.

After euthanasia of the rabbits, 4–6 samples (50 mg each) were taken from the LV free wall; 2–3 samples each were frozen in liquid nitrogen and stored at −70°C until further use or were fixed in formalin and embedded in paraffin.

Echocardiography. LV function (Supervision 7000; Toshiba, Neuss, Germany) was measured in the short-axis view at baseline and after 1, 2, and 3 wk of pacing while the rabbits were conscious and the pacemaker had been turned off for at least 60 min. LVFS-FS and LVEDD were calculated from LVEDD and end-systolic diameter (LVEDD). Ten sham rabbits underwent surgery and were followed for the same 3-wk time frame as HF rabbits. Echocardiography was performed on a weekly basis. There was no change in any measured parameter throughout the observation period, and data after 3 wk are presented in sham rabbits.

Histology. Apoptosis was determined using the TdT-mediated dUTP nick end labeling (TUNEL) technique (In Situ Cell Death Detection Kit; La Roche Diagnostics, Mannheim, Germany), counterstaining with bisbenzimide (HOE-33342) and phalloidin (both Sigma, Taufkirchen, Germany). TUNEL-positive cardiomyocyte nuclei were counted using fluorescence microscopy (Leica DM LB, Bensheim, Germany) and calculated per square millimeter. The extent of myocardial fibrosis was determined by Masson-Goldner trichrome staining and expressed as percentage of field of view (3 fields of 0.075 mm² each) (55).

Quantitative real-time PCR. Total RNA was isolated according to the procedure of Chomczynski and Sacchi (12) from frozen heart samples isolated from sham-operated rabbits (n = 5) or rabbits undergoing 3 wk of pacing (n = 6). One microgram of DNase-treated total RNA was reverse-transcribed using random nonamers (La Roche Diagnostics) and a 1·strand cDNA synthesis kit for RT-PCR (La Roche Diagnostics). Quantitative real-time PCR (qRT-PCR) was performed with a Light Cycler 1.5 (La Roche Diagnostics) in a reaction volume of 10 µl using a Light Cycler FastStart DNA MasterPlus SYBR Green I Kit (La Roche Diagnostics) and 50 pmoles of each primer (nNOS, forward: 5′-GCC AAG GTG ATG TCC ATG-3′; reverse: 5′-GGT CCT CAT TTC CAT CAA G-3′; iNOS, forward: 5′-CAG AGC AGT ACA AGC TCA C-3′; reverse: 5′-GGAG TCT CAG CCT CAT GGT G-3′; 18S, forward: 5′-GGACA GAG TGA CAG ATT GAT AG-3′; reverse: 5′-CTC GTT CGAT CTT CAG AAT TAA C-3′). At least two independent qRT-PCR reactions were performed on each template. The protocol was as follows: an initial denaturation step at 95°C for 10 min was followed by 50 cycles of denaturation (95°C, 10 s), annealing (56°C for nNOS, 60°C for iNOS, 64°C for 18S rRNA, and data after 3 wk are presented in sham rabbits.

Formal laser scan microscopy of iNOS and arginase II. Frozen biopsies were embedded in optimum cutting temperature (OCT) Cryomatrix embedding medium (Shandon, Pittsburgh, PA), and sections of 5 µm were cut in a cryostat. Cryomatrix was removed with PBS. The primary mouse anti-mouse iNOS antibody (dilution 1:10; Transduction Laboratories, Lexington, KY) or the primary goat anti-human arginase II antibody (dilution 1:20; sc-18357; Santa Cruz Biotechnology) was applied, and sections were incubated for 2 h at 37°C. Several rinsing steps with PBS followed, and a FITC-conjugated secondary goat anti-mouse IgG2a antibody (sc-2079; Santa Cruz Biotechnology) or secondary donkey anti-goat antibody (sc-2024; Santa Cruz Biotechnology) was applied for 1 h at 37°C. Negative controls were identical except for the lack of primary antibodies. The samples were coverslipped in Vectashield (H-1000; Vector Laboratories, Burlingame, CA) and examined by laser scan microscopy (LSM Pascal 5; Zeiss, Jena, Germany) at ×400 magnification for iNOS and at ×630 magnification for arginase II. For analysis of both iNOS and arginase II, images of 4 fields of view (0.053 mm² each) at an optimal focus were taken. The density of FITC immunofluorescence in the entire area was analyzed and expressed in arbitrary units (AU). To eliminate background staining, AU values from negative control tissue samples were subtracted.

Western blot analysis. Tissue samples were homogenized in 1× cell lysis buffer (containing 20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na2VO4, 1% Triton X-100, 1 µg/ml leupeptin; Cell Signaling, Danvers, MA), supplemented with 1× complete protease inhibitor cocktail (La Roche Diagnostics). After sonication, the samples were centrifuged at 14,000 g for 10 min at 4°C. The protein concentration of the supernatant was determined using the DC protein assay (Bio-Rad, Hercules, CA). Thirty micrograms of total protein were electrophoresed on 10% Bis-Tris gels (Bio-Rad) and transferred to nitrocellulose membranes (Bio-Rad). After blocking, the membranes were incubated overnight at 4°C with goat polyclonal IgG antibodies against human arginase II (dilution 1:200; sc-18357; Santa Cruz Biotechnology) or with rabbit polyclonal IgG antibodies against rat nNOS (dilution 1:200; Invitrogen, Carlsbad, CA). After incubation with the respective secondary antibodies, immunoreactivities were detected using the SuperSignal West Femto Maximum Sensitivity Substrate (Pierce, Rockford, IL). Signal intensities were quantified using the Scion Image software (Frederick, MD).

Since antibodies are not always specific (31), Western blot analysis for arginase II was performed on protein extracts isolated from the kidneys of wild-type and arginase II knockout mice and from the kidneys and LV of rabbits. Arginase II immunoreactivity was found in rabbit LV protein extracts, in rabbit and wild-type mouse kidneys, but not in the kidney of arginase II knockout mice, demonstrating the specificity of the anti-arginase II antibody used.
Immunoprecipitation. For immunoprecipitation, 400-μg proteins extracted from the LV of sham rabbits were incubated with rabbit anti-iNOS or anti-rabbit horseradish peroxidase-conjugated IgGs for 1 h at 4°C. Protein A/G PLUS-Agarose (Santa Cruz Biotechnology) was added to each sample followed by overnight incubation at 4°C. The Protein A/G PLUS-Agarose beads were washed three times with 500 μl of 1× PBS supplemented with protease inhibitors. After adding sample buffer, the samples were boiled, and the supernatants were subjected to Western blot analysis.

Serum l-arginine concentration. Serum samples for the determination of free l-arginine were deproteinized with sulphosalicylic acid at 14,000 g for 95% of nitrite (7) and was therefore considered as nitrite in the present study. The second fraction was used to determine nitrate and nitrosylated proteins, but after substration of nitrate (second fraction) it is made up by nitrite/nitrate concentrations, tissue was kept on ice and homogenized in a 1:5 ratio with N-ethylmaleimide (NEM)-EDTA solution (100 mM NEM, 2.5 mM EDTA in 0.9% NaCl solution). The homogenate was then split into two fractions. The first fraction, which was used for the measurement of nitrite, was not treated further but injected directly. The first fraction comprises nitrate, nitrite, and all nitrosylated proteins, but after substration of nitrate (second fraction) it is made up by >95% of nitrite (7) and was therefore considered as nitrite in the present study. The second fraction was used to determine nitrate and was first deproteinized with methanol in a 1:2 ratio. After centrifugation at 14,000 g for 15 min, nitrate reductase (0.1 IU/ml), glucose-6-phosphate (1 mM), NADPH (2 mM), and glucose-6-phosphate dehydrogenase (0.3 IU/ml) were added to the supernatant for the conversion of nitrate to nitrite. The suspension was incubated for 1 h at 25°C in the dark before measurement. Through chemiluminescence detection (CLD 88NOe; ECO Physics, Dürnten, Switzerland), both samples in the dark before measurement. Through chemiluminescence detection (CLD 88NOe; ECO Physics, Dürnten, Switzerland), both samples

Tissue nitrite/nitrate concentrations. For determination of the nitrite/nitrate concentrations, tissue was kept on ice and homogenized in 1 mM EDTA and 0.1 mM neocuproine, and centrifuged at 12,000 g for 5 min at 4°C. The resulting pellet underwent the biotin switch assay. In the first step, protein-free thiols were blocked by incubation with the thiol-specific agent methyl methanethiosulfonate. In the second step, S-nitrosothiols were selectively reduced by ascorbate to form thiols, which were then reacted with N-[6-(biotinamido)hexyl]-3′-(2′-pyridyldithio) propionamide, a sulfhydryl-specific biotinylating reagent. Both preparative procedures were performed in the dark to prevent light-induced cleavage of S-nitrosylated proteins. Then, the biotinylated/S-nitrosylated proteins were subjected to immunoblot analysis with anti-biotin antibodies. Densitometry was performed on scanned immunoblots using the ImageJ computer program (NIH, Bethesda, MD). The biotin switch assay measures only S-nitrosylation and not N-nitrosylation, which in the rat heart is of equal magnitude (7).

Superoxide anion concentration. The production of superoxide anions was detected by DHE (D-11347; Molecular Probes, Eugene, OR), a fluorescent dye. In the presence of superoxide, it is oxidized to ethidium bromide, which is excited at 488 nm with an emission spectrum of 610 nm. Frozen tissue samples were embedded in OCT (Cryomatrix) and cut into 10-μm sections at −20°C. Sections were mounted on glass slides. DHE at a solution of 2 μM was applied and incubated at 37°C for 30 min in a humidified chamber. To assure a blockade of iNOS by 1400W, we also added 1400W ex vivo (2 μM) as a control. Negative controls were obtained by blocking the reaction with 100 mM N-acetyl-L-cysteine (NAC; A9165; Sigma) for 30 min before DHE staining. Four images were taken with a laser scanning microscope (LSM Pascal 5; Zeiss, Oberkochen, Germany) including a krypton/argon laser. Three fields of 0.075 mm² each were analyzed.

Statistics. Data are expressed as mean values ± SE. Heart rate, LVS-SF, LVEDD, iNOS and arginase II expression and serum arginine concentration in sham rabbits and HF rabbits after 1, 2, and 3 wk of LV pacing were compared by one-way-ANOVA. Each time point is represented by separate animals that had to be killed at that time point for tissue sampling. When there was a significant overall effect, individual mean values were compared using Bonferroni method. Tissue nitrite, nitrate, protein S-nitrosylation, NOS mRNA and protein data, and superoxide anion data of sham rabbits and HF rabbits after 3 wk of LV pacing were compared by unpaired Student’s t-test. Heart rate, LV function, LV histology, and superoxide anion data in shams and HF rabbits after 3 wk of pacing, each after placebo or inhibition of iNOS with 1400W, were compared using a two-way-ANOVA, again with post hoc comparison of single mean values using Bonferroni method. All statistics were performed using the SigmaStat program. A P value <0.05 was considered significant.

RESULTS

Ventricular function. In rabbits with rapid LV pacing, LVEDD increased, whereas LVS-FS decreased with the progression of HF (Table 1). Heart rate was increased in HF, albeit significantly only in HF-1 and HF-2.

NOS and arginase II expression, serum arginine concentration, tissue nitrite/nitrate concentrations, and protein S-nitrosylation. Using confocal microscopy, myocardial iNOS expression increased by 8.6 ± 0.4-fold only after 3 wk of pacing (HF-3 vs. sham; Fig. 1). Using qRT-PCR, only in three out of six sham rabbits SYBR Green fluorescence reached a value above the background fluorescence indicating iNOS amplification. However, the threshold cycle >43 suggested only marginal amounts of iNOS mRNA in LV tissue of sham rabbits. In contrast, iNOS amplification was detected in six out of six HF-3 rabbits with threshold cycles ranging from 39 to 43, also suggesting increased amounts of iNOS mRNA in HF-3 compared with sham rabbits. The increased iNOS expression was not associated with an increase in the myocardial nitrite or nitrate concentrations (Table 2) or protein S-nitrosylation (Fig. 2). Arginase II expression increased continuously up to threefold with the progression of HF (Fig. 3), whereas serum l-arginine concentration decreased (Table 2). The increase of arginase II expression was confirmed by confocal laser scan microscopy (data not shown). Also, the nNOS mRNA (normalized to 18S RNA) was significantly decreased in HF-3 (0.79 ± 0.08 AU, n = 6) compared with sham rabbits (1.82 ± 0.13 AU, n = 5). The results of the qRT-PCR were confirmed by Western blot analysis (nNOS normalized to Ponceau: 0.06 ± 0.02 AU in

Table 1. Heart rate and left ventricular function during the progression of heart failure

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>HF1</th>
<th>HF2</th>
<th>HF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, beats/min</td>
<td>226 ± 10</td>
<td>258 ± 9*</td>
<td>279 ± 9*</td>
<td>254 ± 11</td>
</tr>
<tr>
<td>LVS-FS, %</td>
<td>30.6 ± 0.7</td>
<td>19.2 ± 0.6*</td>
<td>16.7 ± 1.0†</td>
<td>11.1 ± 1.4††</td>
</tr>
<tr>
<td>LVEDD, mm</td>
<td>17.2 ± 0.3</td>
<td>18.6 ± 0.4</td>
<td>19.3 ± 0.3*</td>
<td>20.0 ± 0.5*</td>
</tr>
</tbody>
</table>

Values are means ± SE. Sham, sham-operated rabbits (n = 8); HF1, heart failure (HF) rabbits, 1-wk pacing (n = 8); HF2, HF rabbits, 2-wk pacing (n = 8); HF3, HF rabbits, 3-wk pacing (n = 7); LVS-FS, left ventricular (LV) systolic fractional shortening; LVEDD, LV end-diastolic diameter. *P < 0.05 vs. Sham; †P < 0.05 vs. HF1; ‡P < 0.05 vs. HF2.
HF-3 vs. 0.02 ± 0.01 in sham rabbits; \(P < 0.05 \). No protein-protein interaction between arginase II and nNOS was detected by commmunoprecipitation.

\textit{iNOS inhibition.} There was no difference in heart rate, LVEDD, LVS-FS, TUNEL-positive cardiomyocytes, or the extent of fibrosis between sham rabbits without or with 1400W. In HF rabbits with placebo, LVEDD increased and LVS-FS decreased after 3 wk of LV pacing, along with increased ROS formation, TUNEL-positive cardiomyocytes, and the extent of fibrosis (Table 3). In HF rabbits treated with 1400W, LVS-FS after 3 wk of pacing was better preserved than in HF rabbits with placebo (Table 3). The increased ROS formation in failing myocardium was attenuated by iNOS blockade in vivo (Table 3) and ex vivo (860 ± 60 AU in HF vs. 683 ± 19 AU in HF with 1400W; \(P < 0.05 \)). Also, the number of TUNEL-positive cardiomyocytes and the extent of fibrosis were reduced by 1400W.

DISCUSSION

We found no evidence for increased NO-related species and protein S-nitrosylation in our pacing-induced HF model despite an increased expression of iNOS. Inhibition of iNOS in the presence of limited substrate, possibly secondary to increased arginase II expression in failing hearts, reduced ROS formation and attenuated LV contractile dysfunction.

Limitations. All animals received the same diet without any supplementation of L-arginine or cofactors of NOS to compensate for any potential decline occurring during HF develop-
Fig. 3. A: representative Western blot of arginase II in sham rabbits (n = 6) and heart failure rabbits after 3 wk of rapid LV pacing (n = 6). B: arginase II expression increases during the time course of 3-wk rapid LV pacing compared with shams. Data are expressed as means ± SE. *P < 0.05 vs. Sham. Sham, n = 8; HF1, n = 8; HF2, n = 8; HF3, n = 7; WT, wild-type; KO, knockout.

Table 3. Heart rate, LV function, ROS concentration, and iNOS expression in sham and HF rabbits without and with inhibition of iNOS with 1400W

<table>
<thead>
<tr>
<th></th>
<th>Sham 1400W</th>
<th>HF</th>
<th>HF 1400W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, beats/min</td>
<td>226 ± 10</td>
<td>224 ± 5</td>
<td>254 ± 11*</td>
</tr>
<tr>
<td>LVS-FS, %</td>
<td>30.6 ± 0.7</td>
<td>30.1 ± 0.6</td>
<td>11.4 ± 1.4*</td>
</tr>
<tr>
<td>LVEDD, mm</td>
<td>17.2 ± 0.3</td>
<td>17.0 ± 0.5</td>
<td>20.0 ± 0.5*</td>
</tr>
<tr>
<td>TUNEL, /1000 × mm²</td>
<td>0.015 ± 0.005</td>
<td>0.015 ± 0.004</td>
<td>0.062 ± 0.008*</td>
</tr>
<tr>
<td>Extent of fibrosis</td>
<td>5.9 ± 0.4</td>
<td>6.3 ± 0.3</td>
<td>14.1 ± 1.4</td>
</tr>
<tr>
<td>ROS, AU</td>
<td>546 ± 20</td>
<td>473 ± 34</td>
<td>860 ± 60*</td>
</tr>
</tbody>
</table>

Values are means ± SE. iNOS, inducible nitric oxide synthase; Sham, n = 8; Sham 1400W, sham-operated rabbits treated with 1400W; HF3, n = 7; TUNEL, TdT-mediated dUTP nick end labeling (TUNEL)-positive cardiomyocytes. *P < 0.05 vs. Sham; †P < 0.05 vs. HF.

most studies, except for those on endotoxin shock, 1400W at concentrations far above the one used in the present study (>5 mg/kg) for durations of up to 2 wk (64) did not affect blood pressure. In endotoxin shock (51, 54), however, 1400W maintained blood pressure by attenuating excessive NO formation. Since NO formation did not increase in the present study despite an increased iNOS expression, it appears unlikely that 1400W increased blood pressure and thereby affected LVS-FS to any significant extent.

We used our established pacing-induced HF model in rabbits. Tachycardia is only rarely the cause of HF in humans (45). Nevertheless, pacing-induced HF is an established and reproducible experimental model of global, homogeneous, relatively quickly developing and then stable LV contractile dysfunction (42, 43, 47). The pacing-induced HF model in rabbits is characterized by typical clinical signs of ascites, cachexia, and splanchnic congestion (1), typical morphological features such as cardiomyocyte hypertrophy, cardiomyocyte apoptosis, and increased fibrosis (2, 55), typical autonomic changes such as increased plasma catecholamines and subsequent β-adrenoceptor downregulation, and enhanced systemic tumor necrosis factor-α concentrations (1).

NOS and arginase II expression. Using different methodologies to measure tissue nitrite/nitrate concentrations and protein S-nitrosylation, no evidence for enhanced myocardial NO-related species or NO-mediated effects were detected in
failing hearts. We observed increases in the expression of both iNOS and arginase II, but increased expression of arginase II preceded that of iNOS. The increase of iNOS expression after only 3 wk of LV pacing is consistent with increased phosphorylation of p38 MAPK at that time (2, 55), and p38 MAPK is an upstream signal of iNOS (2). In the present study, increased iNOS expression was probably not stretch-induced because LVEDD increased already after 2 wk of pacing, whereas iNOS expression was induced only after 3 wk of rapid LV pacing. It is unclear which signal increased the expression of arginase II in failing hearts, but in murine macrophages arginase II protein expression is increased by p38 MAPK and ERK activation (38). In failing hearts, p38 MAPK is unlikely to be an upstream signal of arginase II because p38 MAPK is increased only after 3 wk of rapid LV pacing (55), whereas arginase II expression was increased already after 1 wk of pacing. In support of this, after blockade of p38 MAPK, a similar increase of arginase II expression was measured after 3 wk of rapid LV pacing (data not shown).

NOS and superoxide anion formation. Increased iNOS expression in the presence of limited substrate might result in uncoupling of iNOS (49, 60), thus potentially promoting ROS formation and oxidative modification of myofilaments and ultimately contributing to contractile failure (8, 9). Indeed iNOS inhibition with 1400W attenuated superoxide anion formation and LV contractile dysfunction. In contrast, iNOS overexpression in a transgenic mouse model did not impact on LV contractile function (25). In this model, iNOS was functionally coupled (as indicated by the citrulline assay) and resulted in high concentrations of nitrate. Only in the presence of a simultaneous knockout of myoglobin, thereby avoiding nitrate formation, iNOS overexpression resulted in contractile dysfunction (62). Thus functionally coupled iNOS does not contribute to contractile failure as long as NO is rapidly processed to nitrate.

Our results characterize only the pacing-induced HF model in the strictest sense. We cannot exclude that in HF of different origin (e.g., inflammation or genetic cardiomyopathy) or as the consequence of a more regional event (e.g., myocardial infarction), the increase in iNOS expression may impact on LV contractile function. Of note, in a pig model of short-term hibernation, iNOS expression and NO formation were increased after only 6 h and had an impact on cardiomyocyte function (26).

Further studies are warranted to look at potential dietary interventions and, of note, to look at potential arginase upregulation in biopsy samples from human failing hearts.

Significance and perspectives. An increase in iNOS expression does not necessarily imply increased NO-induced myocardial damage; nevertheless, uncoupled iNOS secondary to substrate limitation might contribute to contractile dysfunction through increased oxidative stress. Increased arginase expression might limit NO substrate availability and contribute to the persistence of hypertension (61, 63). Whether increased arginase expression also contributes to the development/progression of HF by promoting iNOS uncoupling warrants further investigation. Certainly, blockade of enhanced arginase activity/expression might be a promising new therapeutic approach since iNOS, as long as it is functionally coupled, does not contribute to HF development (25).

ACKNOWLEDGMENTS

We thank Mei-Ping Wu for technical assistance in generating the qRT-PCR data. This paper reports the Doctor of Medicine thesis of P. Heusch.

GRANTS

The study was supported by a grant form the German Research Foundation, Bonn, Germany (BR526/12-1).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

