Radius-dependent decline of performance in isolated cardiac muscle does not reflect inadequacy of diffusive oxygen supply

June-Chiew Han, Andrew J. Taberner, Robert S. Kirton, Poul M. F. Nielsen, Rosalind Archer, Nari Kim, and Denis S. Loiselle

Auckland Bioengineering Institute, Department of Engineering Science, and Department of Physiology, The University of Auckland, Auckland, New Zealand; and Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea

ALL ANIMAL LIFE depends on oxygen. Hence, when experimen-
talists study an animal tissue preparation in vitro they strive to
supply oxygen at a rate commensurate with its rate of meta-
bolic consumption. When the in vitro preparation is a whole
organ, such as the isolated heart, oxygen is usually supplied to
the tissues via the coronary circulation, whether directly, in
gaseous form (58), in simple saline solution (57), or reversibly
bound in whole blood (21, 22, 101), erythrocytes (80), or
perfluorocarbon-supplemented media (11, 87). When the in
vitro cardiac preparation is isolated tissue, be it an excised
“strip” (69), a papillary muscle (43), a trabecula (82), or a
single cell (41), it is commonly merely superfused. Under this
circumstance, the adequacy of oxygenation depends critically
on the prevailing Po2, the metabolic demand for oxygen, and
the radius of the preparation.

There is abundant evidence that the performance of isolated
cardiac preparations varies inversely with size. Indeed, an early
investigation (15) showed that even the basal rate of oxygen
combustion of excised feline papillary muscles depends inver-
sely on muscle diameter. Even much smaller guinea pig
right ventricular trabeculae are not immune when the oxygen
demand is increased by the induction of K+ contractures or the
addition of agents chosen to uncouple oxidative phosphoryla-
tion (16). Comparable examples exist in “mechanics” litera-
ture. Thus, Schouten and ter Keurs (86) documented an inverse
relationship between peak isometric twitch force production
and the diameter of rat ventricular trabeculae and small papil-
lar muscles. More recently, Raman et al. (81) revealed a
striking radius-dependent diminution of isometric stress (force
per cross-sectional area) development by rat trabeculae in the
face of high metabolic demand (8-Hz stimulation at 37°C). It is
these latter results, in particular, that have motivated us to
reexamine the issue of insufficiency of diffusive supply of
oxygen to an isolated trabecula in vitro. Our primary investiga-
tive tool is mathematical modeling.

Mathematical modeling of the adequacy of tissue oxygena-
tion requires solution of the diffusion equation. This approach
has a lengthy history, commencing with the still much-refer-
cenced work of A. V. Hill (42), in which analytic solutions were
developed for the steady-state Po2 within muscles of various
cross-sections consuming oxygen at various Po2-independent
rates. Numerous variations on this theme have been published
over the years. Some have restricted consideration to simple
diffusion (63, 68, 92, 93), whereas others have included myo-
globin-facilitated diffusion (14, 26, 33, 55, 59, 71, 73, 74, 83,
99, 100).

To explore the effects of time-varying metabolic demands,
Barclay (3) solved the full partial differential diffusion equa-
tion allowing both time- and radial location-dependent solu-
tions for papillary muscles and trabeculae carneae. Subse-
quenty, Cairns et al. (10) used a comparable approach to probe
the role of oxygen insufficiency in the course of a fatiguing
stimulation protocol imposed on isolated fast- and slow-twitch
skeletal muscle preparations. More recently, Goo et al. (34)
developed a novel method of solution of the diffusion equation
for cardiac trabeculae of any arbitrary cross-section in either
the presence or absence of capillary (arteriolar) sources or
(venous) sinks of oxygen. However, none of these recent
reports has examined the radius-dependent decline of cardiac
performance (whether indexed directly as the rate of oxygen
consumption or indirectly as stress production or as the rate of
heat production).

In the present study, we extend the use of Hill’s diffusion
equation to simulate the radius-dependent diminution of car-
diac muscle performance in vitro using well-characterized
parameters values. The cross-section of the muscle preparation
is assumed to be circular. We further assume that active stress
production, active rate of heat production, and basal rate of oxygen uptake are linearly proportional to the cross-sectional area that remains oxygenated. We demonstrate that preparations of sufficiently large diameter must, indeed, develop anoxic cores; however, there remains an irreconcilable quantitative disparity between experimental and simulated results.

METHODS

Models

The one-dimensional model. A theoretical analysis of the adequacy of oxygen supply was made by estimating the distribution of steady-state PO2 (0 ≤ p ≤ P; in Pa) as a function of muscle radius (0 ≤ r ≤ R; in μm) throughout the circular cross-section of the muscle (3, 4, 10, 34, 59, 97). Our analysis followed the general approach described by Hill (42) but included a modification introduced by Loiselle (63) to account for a more realistic relationship between PO2 and the metabolic rate of oxygen consumption (m; in mol·m⁻³·s⁻¹) and that incorporated myoglobin-facilitated oxygen diffusion (3, 14, 26, 33, 55, 59, 71, 73, 74, 83, 99, 100). The governing equation is as follows:

\[
\sigma \times \frac{\partial p(r,t)}{\partial t} = D_O \left[\frac{\partial^2 p(r,t)}{\partial r^2} + \frac{1}{r} \frac{\partial p(r,t)}{\partial r} \right] + D_m \frac{\partial S[p(r,t)]}{\partial r} - m[p(r,t)] \tag{1}
\]

where \(\sigma\) and \(D\) are the solubility (in mol·m⁻³·Pa⁻¹) and diffusion constant (in m²/s) of oxygen in muscle tissue, respectively; \(t\) is time; \(C_{50}\) and \(D_m\) are the concentration (in mol/m³) and diffusion constant (m²/s) of myoglobin in muscle tissue, respectively; and \(S\) is the fraction of myoglobin that is saturated with oxygen.

At steady state, \(\partial p(r,t)/\partial t = 0\), so Eq. 1 reduces to the following:

\[
\frac{d^2 p(r)}{dr^2} + \frac{1}{r} \frac{dp(r)}{dr} + D_m \frac{dS[p(r)]}{dr} = \frac{m[p(r)]}{K} \tag{2}
\]

where \(K\) is Krogh’s constant (equivalent to the product of \(m\) and \(r_t\)), as a function of local PO2, is given by the following:

\[
S[p(r)] = \left[\frac{p(r)}{p_{oxygen}} \right]^{n_H} + p_{50}^{n_H} \tag{3}
\]

where \(p_{50}\) (in Pa) is the PO2 that achieves half-saturation of myoglobin by oxygen and \(n_H\) is the Hill coefficient for myoglobin saturation.

\(m\) (in mol·m⁻³·s⁻¹) is also a function of local PO2, given by the following:

\[
m[p(r)] = (m_b + m_a) \times \left[\frac{p(r)}{p_{oxygen}} \right]^{n_H} + p_{50}^{n_H} \tag{4}
\]

where \(m_b\) and \(m_a\) are muscle basal and active rates of oxygen consumption, respectively; PO20 (in Pa) is the PO2 that yields the half-maximal value of \(m\); and \(n_H\) is the Hill coefficient constraining the sigmoidal dependence of \(m\) on PO2.

Following Cairns et al. (10), the fraction of the muscle cross-section that remains oxygenated (AOxy) is calculated as follows:

\[
A_{oxy} = \frac{1}{\pi R^2} \int_0^R \left\{ \left[\frac{p(r)}{p_{oxygen}} \right]^{n_H} + p_{50}^{n_H} \right\} \times 2\pi r dr \tag{5}
\]

where the term in braces (see Eq. 4) accounts for the sigmoidal diminution of \(m\) as PO2 passes through PO20 and approaches zero.

The one-dimensional (1-D) model was implemented in Matlab R2008a (The MathWorks) using the built-in “pdepe” function. The model was solved as a time-dependent problem (Eq. 1) and was run until steady-state values of p were reached (Eq. 2). Initially, the entire cross-section of the muscle was assigned the same value of PO2 as prevails at its surface, i.e., \(p(R) = P\). At all times, PO2 at the muscle surface was constant, i.e., \(p(R) = P\), and a flux symmetry condition was applied at the muscle center: \(\partial p(0)/\partial r = 0\).

Validation of the 1-D model. Results were validated against the analytic solutions of the steady-state Hill diffusion equation (42), in which \(m\) is constant, independent of \(r\), and myoglobin-facilitated oxygen diffusion is ignored. The critical radius \(R_{crit}(Hill)\), defined as the thickest cylinder which oxygen will fully penetrate (42), is as follows:

\[
R_{crit}(Hill) = \sqrt{4 \times K \times P \over (m_b + m_a)} \tag{6}
\]

Under this assumption, the relationship between muscle radius and the fraction of whole cross-section of muscle supplied with oxygen (\(\theta\)) is as follows:

\[
\theta = 1 - \left(r' / R \right)^2 \tag{7}
\]

where \(0 < \theta < 1\) and \(r'\) is the radius at which \(p = 0\) (42). Note the difference between \(\theta\) and AOxy (Eq. 5), where AOxy takes into account the sigmoidal dependence of \(m\) on local PO2.

Model parameters. The values (expressed in both SI and conventional units) of parameters adopted for the model, together with their sources, are shown in Table 1. Literature values are further documented in Tables A1–A3 (Appendix A), where those adopted for the model have been highlighted.

We adopted the active heat rate values, measured at 37°C, reported by Loiselle et al. (66) despite the fact that those data arise from only a single superfused rat trabecula. We converted the heat rate values from milliWatts per gram dry weight to milliWatts per meters cubed by taking into account the radius, length, and dry weight of the muscle and by converting oxygen consumption to the rate of heat production using an energetic equivalent of oxygen of 20 kJ/O (91). At 2 and 6 Hz, the equivalent rates of oxygen consumption were 0.044 and 0.150 mol·m⁻³·s⁻¹, respectively. These values are consistent with those reported by Hütter et al. (46) for the rat heart over the same range of frequencies: 0.053 and 0.159 mol·m⁻³·s⁻¹, respectively. Similarly, values at 3 and 4 Hz (0.069 and 0.094 mol·m⁻³·s⁻¹, respectively) were in good agreement with the average values at 3 and 4 Hz obtained by Schenkman (85) in guinea pig hearts (0.092 mol·m⁻³·s⁻¹). Finally, the value measured by Loiselle et al. (66) at 1 Hz was 0.022 mol·m⁻³·s⁻¹, which again compared well with that of 0.024 mol·m⁻³·s⁻¹ obtained by Holmes et al. (44) in rabbit papillary muscles at optimal muscle length. With such excellent correspondence, we felt justified in adopting the values reported by Loiselle et al. (66) for our simulation of experimental data at 37°C.

The output of the model (PO2 as a function of \(r\)) is clearly a function of its parameter values. To explore this functional dependence, we performed a full parameter sensitivity analysis (13). The results of this analysis appear in Table D1 (Appendix B), where it can be seen that the influence of each of the myoglobin-related parameters is negligible, being completely dominated by three parameters: namely, \(P\), \(m\), and \(K\).
progressively along the length of the muscle. For this simulation, we adopted the same parameter values as in the 1-D case. The 2-D case requires a description of the geometry of the measurement chamber. It was modeled as a cylinder of 500-μm radius whose length equals that of the trabecula. The upstream and downstream hooks, which attached the preparation, were modeled as cylinders of radius 200 μm and length 150 μm.

The 2-D model was implemented in COMSOL Multiphysics 3.5a (COMSOL) using the “convection and diffusion” module coupled with the “incompressible Navier-Stokes fluid dynamics” module. The model was solved in cylindrical coordinates as a time-dependent problem until steady state was achieved.

In cylindrical coordinates, the governing equation of advection and diffusion of oxygen is as follows:

\[
\frac{\partial c}{\partial t} + \nabla \cdot (-D \nabla c) = m - u \cdot \nabla c
\]

(8)

where \(c \) is the concentration of oxygen (in mol/m³), \(u \) is the velocity field (in m/s), \(\nabla \) is the standard del operator, and \(m \) and \(D \) have the meanings defined above. Oxygen concentration is the product of its partial pressure and its solubility, i.e., \(c(r,t;l) = \sigma \times \rho(r,t;l) \), where \(l \) is location along the muscle or chamber length \((0 \leq l \leq L) \), in m.

In the muscle domain, \(u = 0 \), and \(m \) is as follows:

\[
m = (m_b + m_o) \frac{[c(r,t;L)]^p}{[c(r,t;L)]^p + c_{O2}^o}
\]

(9)

where \(c_{O2} \) is the oxygen concentration yielding the half-maximal value of \(m \).

In the superfusate domain, \(D \) was taken to be 2.07 \(\times 10^{-9} \) m²/s, which was calculated from van Stroe and Janssen (95) at 22°C and 130 mM NaCl. This value agreed well with 2.1 \(\times 10^{-9} \) m²/s as measured by Evans et al. (23) and is within the range calculated by Ju and Ho (47) (1.88 \(\times 10^{-9} \) m²/s) and by Hung and Dinius (45) (2.86 \(\times 10^{-9} \) m²/s). The solubility of the superfusate at 22°C was calculated to be 1.32 \(\times 10^{-5} \) mol·m⁻³·Pa⁻¹ using the value for physiological saline (22.7 ml·l⁻¹·atm⁻¹ at 37°C and Q₁₀ of 0.83) as reported by Loiselle (61). The calculated value at 22°C was in excellent accord with a value of 3.93 \(\times 10^{-2} \) ml·l⁻¹·Tor·⁻¹ (or, equivalently, 1.31 \(\times 10^{-5} \) mol·m⁻³·Pa⁻¹) as measured by Graham (35) and 1.32 \(\times 10^{-5} \) mol·m⁻³·Pa⁻¹ as measured by Evans et al. (23) at the same temperature.

The velocity field \(u \) of the superfusate was calculated as the following ratio of the superfusate flow rate to the annular area of the superfusate domain: \(u = l/\pi(R_2^2 - R_1^2) \), where \(R_1 \) is the radius of the superfusate chamber.
The Navier-Stokes model of incompressible Newtonian flow (constant viscosity) was used to calculate the velocity field \(\mathbf{u} \) that results from advection in the superfusate domain as follows:

\[
\rho \frac{\partial \mathbf{u}}{\partial t} - \eta \nabla^2 \mathbf{u} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0, \quad \nabla \times \mathbf{u} = 0 \quad (10)
\]

where \(\rho \) is density (998 kg/m), \(p \) is pressure (0 Pa), and \(\eta \) is the dynamic viscosity of the superfusate, approximated by that of water \((1 \times 10^{-3} \text{ Pa s})\).

In the advection-diffusion model, the following boundary conditions were assumed: the advective flux, \(n \times (-D \nabla c) = 0 \) for the muscle center and the side walls, \(\mathbf{u} \cdot \mathbf{n} = 0 \) at the muscle-superfusate interface, and a constant \(c = P \times \sigma \) at the superfusate inlet. In the incompressible Navier-Stokes model, the boundary condition at the superfusate inlet was assumed to obey parabolic Poiseuille flow. At the superfusate outlet, the outflow condition was defined as pressure with no viscous stress, using a value of 0 Pa. At the chamber wall and at the muscle-superfusate interface, a nonslip boundary condition was adopted. Triangular elements were used, and refinement of the mesh produced some 5,000 elements. The model was solved using the UMFPACK direct solver.

The Hagen-Poiseuille equation, which can be derived from the Navier-Stokes model of incompressible Newtonian flow (constant viscosity) was used to calculate the velocity field \(\mathbf{u} \) within the measurement domain.

\[
\text{Average } [O_2] = \frac{\int_{R}^{L} c(r) \times 2\pi r dr}{\pi (R^2 - r^2)} \quad (14)
\]

The difference between the measured values of \(c \) at stimulus frequencies of 0.2 and 2 Hz \((7.7 \text{ mmol/m}^3)\) agreed well with that predicted by the 2-D model using the measured active rate of heat production \((8.7 \text{ mmol/m}^3)\). Likewise, between 0.2 and 4 Hz, the difference between the measured values of \(c \) \((14.9 \text{ mmol/m}^3)\) was in excellent agreement with that predicted by the 2-D model \((14.6 \text{ mmol/m}^3)\), thereby giving us confidence in the numerical output of the model.

Experimental Measurements

We simultaneously measured the steady-state active rate of heat production and active stress production of geometrically uniform right ventricular trabeculae from Wistar rats, as previously described \((39, 40)\), at two stimulus frequencies: 0.2 and 4 Hz. The composition of the superfusate was \((in m) 130 \text{ NaCl}, 6 \text{ KCl}, 1 \text{ MgCl}_2, 0.5 \text{ NaH}_2\text{PO}_4, 2 \text{ CaCl}_2, 10 \text{ Hepes}, and 10 \text{ glucose. pH was adjusted to 7.4 using Tris. The superfusate was vigorously bubbled with 100\% O}_2\text{ at room temperature (22°C) and was maintained at a flow rate of 1 μl/s. In total, 15 trabeculae of radii between 60 and 150 μm were examined. Subsequently, the extracellular Ca$^{2+}$ concentration ([Ca$^{2+}$]o) was halved, i.e., to 1 mM, and the thermal and mechanical performance of 11 of the trabeculae were reexamined. All experimental protocols were approved by the Animal Ethics Committee of The University of Auckland. AJP-Heart Circ Physiol • VOL 300 • APRIL 2011 • www.ajpheart.org
To extend our observations made at 22°C, we explored the radius dependence of stress production in rat trabeculae under more physiological conditions (37°C and 1.5 mM \([\text{Ca}^{2+}]_o\)) and at the substantially higher superfusate flow rate of 6–8 \(\mu\)l/s. We examined the performance of 16 trabeculae at stimulus frequencies of 5 and 10 Hz; 11 preparations were also examined at 1 Hz.

RESULTS

Experimental Results

Figure 1 shows, as a function of \(R\), steady-state active twitch stress (force per cross-sectional area) production \((A)\) and active rate of heat production \((B)\) at 22°C and 2 mM \([\text{Ca}^{2+}]_o\) of 15 trabeculae in response to both 0.2 Hz (open circles) and 4 Hz (solid circles). As is evident, in neither case was there radius dependence at 0.2 Hz, but diminution of both stress and heat rate with increasing muscle radius was evident at 4 Hz.

Given the negative relationship between active heat rate and \(R\) at 4 Hz (Fig. 1B), which is qualitatively consistent with the conjecture of insufficient diffusive supply of oxygen in large muscles, we extrapolated the linear regression line to zero radius. We assume that this extrapolated value (79.4 kW/m³), which we define as the “extreme heat rate,” represents the heat rate achievable by a single myocyte unfettered by diffusion insufficiency. The extreme heat rate was converted to the “extreme rate of \(\text{O}_2\) consumption” using an energetic equivalent of oxygen of 20 kJ/l and muscle density of 1.06 \(\times\) 10³ kg/m.

Figure 2A shows that the decline of stress with \(R\) at room temperature and 4-Hz stimulus frequency observed in Fig.

Fig. 2. Active stress production as a function of \(R\) at various temperatures, \([\text{Ca}^{2+}]_o\) concentrations, and stimulus frequencies (A: 22°C, 1 mM, and 4 Hz; B: 37°C, 1.5 mM, and 5 Hz; C: 37°C, 1.5 mM, and 1 Hz; and D: 37°C, 1.5 mM, and 10 Hz). Data were fitted using linear regression.

Fig. 3. Predicted steady-state \(\text{PO}_2\) as a function of distance from the muscle center \(r\) at 4-Hz stimulation (22°C and 2 mM \([\text{Ca}^{2+}]_o\)) for the thinnest (60-\(\mu\)m radius; thin lines) and thickest (150-\(\mu\)m radius; thick lines) cardiac trabeculae examined experimentally, with (A) and without (B) the contribution of myoglobin, using measured (red) and “extreme” (black) active rates of heat production and the literature value of Krogh’s constant \((K;\) Table 1). The blue and green lines are the results of adopting the extreme active rate of heat production but with half the values of \(K\) or external \(\text{PO}_2\) (P).
AQUITY OF DIFFUSIVE OXYGEN SUPPLY

1A was not a consequence of elevated Ca$^{2+}$ concentration; reduction of [Ca$^{2+}$]o to 1 mM produced comparable behaviour. Similarly, at 37°C and physiological Ca$^{2+}$ concentration appropriate for the rat (1.5 mM), stress declined with R at all stimulus frequencies examined (Fig. 2, B–D). We note, once again, that each behavior is qualitatively consistent with a radius-dependent limitation of oxygen diffusion.

Modeling Results

Negligible contribution of myoglobin. We solved the time-dependent 1-D diffusion equation (Eq. 1) until steady state (Eq. 2) with and without the myoglobin term and plotted PO$_2$ as a function of r (note the difference between r and R: 0 ≤ r ≤ R). As shown by the comparison in Fig. 3, A and B, the contribution of myoglobin was found to be negligible, consistent with the experimental observation by Merx et al. (70) that ambient PO$_2$ must be extremely low (~0.01 atm in isolated cardiomyocytes) before such a contribution can be detected. It is also consistent with the theoretical results reported by Loiselle (59) and confirmed by Barclay (3) as well as with the result of our parameter sensitivity analysis (Table B1). Because of its negligible contribution to the diffusive flux of oxygen, the myoglobin term was ignored in subsequent modeling results.

The relationship between p and r. In Fig. 3, we show the calculated PO$_2$ profiles for the thinnest (60 μm) and thickest (150 μm) muscles examined (at 22°C) in the presence (A) and absence (B) of a contribution from myoglobin. For these simulations, we used both the experimentally measured active heat rates (red) as well as the (extrapolated) extreme heat rate (black). In addition, using the extreme heat rate, we explored the profiles of PO$_2$ by doubling the literature value of m (or, equivalently, halving the value of K in the absence of a contribution from myoglobin; see Eq. 2; blue), or halving the value of P (green). Under all scenarios, the thinnest muscle was predicted to have a fully oxygenated cross-section. The cross-sectional area of the thickest muscle, in contrast, was predicted to be fully oxygenated except for those cases where m was doubled or P was halved.

Validation. We validated our model by comparing its output with analytic solutions arising from the Hill formulation. For the thickest muscle, when m was doubled, the radius of the anoxic core was calculated to be 49.8 μm (note the difference between R and R$_{oxy}$: 0 ≤ r ≤ R$_{oxy}$). The differences in predicted PO$_2$ profiles for the thinnest (60 μm) and thickest (150 μm) muscles examined (at 22°C) in the presence (A) and absence (B) of a contribution from myoglobin were calculated at steady state (k/K_m) using parameter values appropriate for 22°C with those using parameter values for 22°C and the extreme heat rate. For these simulations, we used both the experimentally measured active heat rates (red) as well as the (extrapolated) extreme heat rate (black). In addition, using the extreme heat rate, we explored the profiles of PO$_2$ by doubling the literature value of m (or, equivalently, halving the value of K in the absence of a contribution from myoglobin; see Eq. 2; blue), or halving the value of P (green). Under all scenarios, the thinnest muscle was predicted to have a fully oxygenated cross-section. The cross-sectional area of the thickest muscle, in contrast, was predicted to be fully oxygenated except for those cases where m was doubled or P was halved.

Fig. 5. Experimentally measured stress production (22°C, 2 mM [Ca$^{2+}$]o, and 4 Hz), overlaid with simulated profiles of A$_{oxy}$ as a function of R using the extreme rate of heat production and 1, 5, 10, or 20 times the literature value of mL/K (A) or P = 1, 0.2, 0.1, or 0.05 × 105 Pa (B). Simulated A$_{oxy}$ values mimicked experimental data only if mL/K was 10-fold the common literature values or when P was reduced to 1/10 of its experimental value.
enches were very small because P_{O_2} is only 0.2% of P (i.e., the ratio of 213 to 1.01 $\times 10^5$ Pa; see Table 1).

Simulated A_{oxy} as a function of R. As shown in Fig. 4 (solid lines), the calculated A_{oxy} is independent of R up to a point where A_{oxy} decreases monotonically. We define this point as the “critical radius” R_{crit}; note that R_{crit} differs from $R_{crit(Hill)}$ (Eq. 6), in which R_{crit} takes into account the O_2 dependence of m and divided the relationship between A_{oxy} and R into two portions. The first portion started from zero radius and extended to R_{crit}. Muscles whose radii fell in this segment were predicted to be fully oxygenated and, hence, were predicted to develop maximum stress. The second portion of the relationship extended beyond R_{crit}. Muscles in this region were predicted to develop anoxic cores and to develop submaximal stresses, in strict proportion with A_{oxy}.

Using the parameter values for 22°C and the extreme heat rate value, converted to its equivalent value of m, R_{crit} was computed to be 165.9 μm (Fig. 4A), in agreement with that calculated using Hill’s analytic solution (165.7 μm; Eq. 6). As shown in Fig. 4A, *insets*, a muscle of radius 100 μm was predicted to be fully oxygenated and, thus, capable of developing maximal active stress. Muscles of radii 200, 400, or 1,000 μm were predicted to have A_{oxy} of 0.912, 0.529 and 0.226, respectively. We assumed that such muscles would develop correspondingly submaximal active stresses. When the extreme heat rate value (m) was doubled (or the literature value of K was halved), the simulated value of R_{crit} was reduced to 117.9 μm (cf. Hill’s analytic solution of 118.4 μm). Under this scenario, we would expect some of the muscles examined in this study to be hypoxic. The thickest muscle (radius 150 μm), for example, would be expected to developed an anoxic core such that its A_{oxy} would be 0.877 (Fig. 4B), thereby producing only 0.877 of its potential maximum active stress. When m was arbitrarily increased 10-fold (or K was reduced 10-fold), A_{oxy} of the thickest muscle was 0.454 and would be expected to produce 0.454 of its maximum active stress (Fig. 4B).

Simulation of experimental data. Following the same approach used in Fig. 4, we simulated our experimentally measured steady-state active stress-radius data at 4 Hz (22°C and 2 mM $[Ca^{2+}]_o$) and superimposed the predicted A_{oxy}. As shown in Fig. 5A, using the literature value for m/K, R_{crit} was computed to be 165.9 μm. All muscles examined (radii 60–150 μm) were smaller than this, such that they were expected to have been fully oxygenated. The predicted profile of A_{oxy} completely failed to mimic the experimental data, despite using the extreme heat rate (Fig. 1B). To mimic, quantitatively, the decline of experimentally measured active stress with muscle radius, it would be necessary to increase the value of m/K by 10-fold. Under this implausible 10-fold increase, R_{crit} would become 52.4 μm, such that all muscles examined would be
predicted to be hypoxic, thereby developing stress quantitatively in line with the predicted A_{oxy} (under the assumption that active stress production is linearly proportional to the fractional cross-section oxygenated). As shown in Fig. 5B, a comparable 10-fold reduction of P was found to be required. It should be emphasised that a P_{O_2} value of 10 kPa would be only one-half a comparable cross-section oxygenated. As shown in Fig. 5B, active stress production is linearly proportional to the fractional active stress at 3.3 Hz (75–70 kPa), allowing the authors to infer that the “plateau” of active stress in trabeculae of small radii. They also showed that active stress plummeted in trabeculae of radii smaller than the predicted value of R_{crit}, the pronounced radius-dependent decline of stress production remains a mystery, as it cannot be attributed to inadequate diffusive oxygen supply. By increasing the value of m/K by 10- or 20-fold, R_{crit} was reduced to 60.6 and 44.0 μm, respectively. Only under this improbable scenario could acceptable quantitative agreement between predicted and experimentally measured stress be achieved.

To avoid the assumptions invoked when relating measurements of either heat or stress to oxygen consumption, we simulated the experimentally measured rates of basal oxygen uptake of quiescent papillary muscles of the cat, as reported by Cranefield and Greenspan (15). As shown in Fig. 9, using literature values for m/K, the predicted value of R_{crit} was 389.0

![Fig. 8](http://ajpheart.physiology.org/) Experimental stress production of isolated trabeculae (●) and papillary muscles (○) of rats (26°C and 2.5 mM [Ca$^{2+}$]), overlaid with simulated profiles of A_{oxy} as a function of R using 1-, 10-, and 20-fold the literature value of m/K (A) and $P = 0.95$, 0.2, 0.1, or 0.05×10^5 Pa (B). Simulated A_{oxy} values mimicked the experimental data only if m/K was 20-fold the values shown in Table 1 or when $P = 0.05–0.1 \times 10^5$ Pa. Data were digitized from Fig. 2 of Schouten and ter Keurs (86), where the fractional stress was reported as the active stress at 3.3 Hz divided by that at 0.1 Hz. The maximum active stress at 3.3 Hz was estimated to be 73 kPa. The corresponding rate of active oxygen consumption used in the simulation was calculated from the active heat rate of 50 kW/m3 (calculated from the heat-stress relationships at 27°C determined by Kiriazis and Gibbs (53)).

![Fig. 9](http://ajpheart.physiology.org/) Experimentally measured rates of oxygen uptake of unstretched (●) and stretched (○) quiescent papillary muscles from cat ventricles (35°C and 2.7 mM [Ca$^{2+}$]), overlaid with simulated profiles of A_{oxy} as a function of R using 1- or 5-fold the literature value of m/K (A) and $P = 0.95$ and 0.2×10^5 Pa (B). The data were digitized from Figs. 1 and 2 of Cranefield and Greenspan (15), retaining the authors’ units. The maximum rate of oxygen uptake was taken to be 3.20μl·mg$^{-1}$·h$^{-1}$.

AJP-Heart Circ Physiol • VOL 300 • APRIL 2011 • www.ajpheart.org
μm. R_{crit}, calculated by the authors (320 μm) was roughly comparable. About one-half of the preparations were predicted to be hypoxic (i.e., to have had radii greater than R_{crit}), but their measured rates of oxygen uptakes were much less than predicted. It was necessary to multiply m_lK by a factor of five or to decrease the value of P to 20 kPa (room air equilibrated) to mimic the observed decline of basal rate of oxygen uptake with radius.

To underscore our discomfort with the hypothesis that radius-dependent diminution of performance (i.e., active stress) is exclusively due to oxygen diffusion limitation, in Fig. 10 we show the digitized data of Fisher and Kavaler (24), which were measured from canine papillary muscles in situ. Instead of being isolated preparations superfused with an external medium, these preparations were blood perfused by their own coronary circulation and thus very unlikely to have developed hypoxic cores. Nevertheless, a similar radius-dependent decline of active stress was evident.

The 2-D model result. As a final test of the lack of correspondence between simulation and experiment, we determined the steady-state results of 2-D modeling of the advection-diffusion equation (Eq. 8) applied to a specific case (22°C, 2 mM $[\text{Ca}^{2+}]_o$, and 4-Hz stimulation), chosen for its extreme conditions: the largest muscle that we examined (radius: 150 μm and length: 4.0 mm) subjected to the extrapolated extreme heat rate value (Fig. 1B) at a superfusate flow rate of 1 μl/s.

Figure 11 shows steady-state P_{O_2} contours (blue: 101 kPa and red: 0 kPa) within the superfusate and muscle domains. The geometries of the superfusate chamber and hooks mimic those of the measurement chamber (90) of our micromechanocalorimeter (39). Figure 12A shows P_{O_2} as a function of r (radial distance from the muscle center), whereas Fig. 12B shows P_{O_2} as a function of l (axial distance from the upstream end). At the upstream end, the P_{O_2} of the superfusate domain was set to 101 kPa (1.24 mol/m³, boundary condition), whereas within the muscle, it dropped to 9.3 kPa at the center. At the downstream end, in contrast, the superfusate P_{O_2} was lower (average of 97.9 kPa or, equivalently, 1.21 mol/m³; Eq. 14) such that at the muscle surface and muscle center, P_{O_2} was 62.3 and 0.04 kPa, respectively. Note that the latter value is in the vicinity of $P_{O_2,50}$ (0.213 kPa; Table 1). A_{oxy} monotonically decreased along the muscle length (Fig. 12C), from a value of 1.000 to 0.962, such that V_{oxy} (Eq. 13) was estimated to be 0.984.

We predict that this muscle could have been producing heat at a rate 0.984 times the extreme heat rate. However, its measured rate of heat production was 45.8 kW/m³, only ~0.58 times the predicted value.

DISCUSSION

In isolated cardiac preparations, an inverse relationship between muscle stress production (6, 19, 24, 25, 27, 30, 31, 50, 53, 60, 63, 65, 81, 86), basal rate of heat production (64, 98), or basal rate of oxygen uptake (15) and muscle radius has repeatedly been reported. Many experimentalists have used the observed inverse relationship between muscle contractile performance and muscle radius to demonstrate the inadequacy of oxygenation in preparations that exceed some particular size and ipso facto to declare a “critical radius” above which diffusion fails to supply sufficient oxygen to the core of the preparations to prevent the diminution of performance (6, 15, 27, 50, 81, 86). In the present report, we tested the conjecture that the radius-dependent decline of muscle twitch stress production, observed experimentally, reflects inadequacy of the diffusive oxygen supply. Our “test” consisted of comparing the results of mathematical models of diffusive oxygen transport with experimental data, based on the assumption that muscle stress production is linearly proportional to the cross-sectional area of the muscle that remains oxygenated. We further assumed that isolated cardiac preparations (papillary muscles and trabeculae carneae) are circular in cross-section. The implications of these assumptions require examination.

Assumptions of the Model: Implications

Cross-sectional geometry. The elliptical geometry of trabeculae in cross-section is now well recognized (29, 54, 66, 81, 84, 96). Indeed, Goo et al. (34) recently applied an index of eccentricity (e) to quantify the extent of departure from circularity in a variety of specimens from both ventricles of the rat, emphasizing the potential error of estimating stress development under the “circularity” assumption. However, no compa-
rable risk applies to oxygen diffusion. The reason is straight-forward. For any given cross-sectional area, the diffusion distance from the perimeter to core will necessarily be less for an ellipse than for a circle. This means that an even larger “radius” (semi-major axis) can be tolerated before an anoxic core would develop in a trabecula of elliptical cross-section. This issue can be quantified by comparing two trabeculae of equal cross-sectional areas: \(A = \pi R^2 \) (circular) and \(A = \pi a b \) (elliptical; where \(a \) and \(b \) are the semi-major and semi-minor axes, respectively). \(\varepsilon \) is given by the following (34):

\[
\varepsilon = \sqrt{1 - b^2/a^2}, \quad 0 < \varepsilon < 1 \tag{15}
\]

Substitution of the expressions for cross-sectional area into Eq. 15 yields the following:

\[
\frac{a}{b} = \frac{2}{\sqrt{1 - \varepsilon^2}}
\]

Fig. 12. A: simulated steady-state profile of \(\text{PO}_2 \) as a function of \(r \) (distance from the muscle center (0 \(\mu \)m) to the radius of the superfusate chamber \(R_c \) (500 \(\mu \)m) at the upstream and downstream ends of the thickest trabecula (\(R = 150 \mu \)m, as indicated by the vertical dotted line). The average values of \(\text{PO}_2 \) in the superfusate domain at the upstream and downstream ends were 101 and 97.9 kPa [or, equivalently, 1.24 and 1.21 mol/m\(^3\)], respectively (calculated using Eq. 14). Within the muscle, \(\text{PO}_2 \) dropped from 101 to 9.3 kPa at the upstream end and from 62.3 to 0.04 kPa at the downstream end. These values appear in B, where \(\text{PO}_2 \) dropped along the muscle length (0 \(\leq L \leq 4 \) mm). C: \(A_{\text{oxy}} \) (Eq. 5) decreased from 1.000 to 0.962 along the muscle length such that \(\nu_{\text{oxy}} \) (Eq. 13) was 0.984.

Fig. 13. Simulated effects of \(P_i \). The symbols in A–D represent experimental data previously shown in Figs. 5–8, respectively. The thin gray lines denote simulations of data arising from five sources under a variety of experimental conditions (28, 32, 51, 52, 94). Parameters required for Eq. 15 (\(S_1, S_2, n, \) and \(P_{i,0} \)) were obtained by nonlinear curve fitting of the digitized form of \(S = S(P_i) \) data reported by the authors. The value of the rate of production of \(P_i \) \(\rho \) \((0.2 \times 10^{-3} \text{mol} \cdot \text{l}^{-1} \cdot \text{s}^{-1}) \) in A was adopted from Kentish (52) for rat skinned trabeculae at room temperature. For B–D, \(\rho \) was adjusted for temperature using the data for \((m_a + m_b) \) shown in Table 1, yielding values of 0.33, 0.26, and 0.16 \(\times 10^{-3} \text{mol} \cdot \text{l}^{-1} \cdot \text{s}^{-1} \), respectively. The thick black lines show the average of the resulting five different stress-radius relationships. The thin black lines represent solutions for values of 5, 10, or 20 times greater rates of \(P_i \) production.
\[b = R^4 \sqrt{1 - \varepsilon^2} \]

(16)

Since \(\varepsilon < 1, b < R \), thereby favoring diffusion into an ellipse in proportion to the extent of its eccentricity, as given by Eq. 16.

Linear dependence of stress on \(A_{\text{oxy}} \). This is an admittedly gross assumption that denies any significant contribution by anaerobic metabolism to the production of ATP. It does, however, allow for active stress development to decline progressively in the annulus between the fully oxygenated region and the anoxic core (as shown in the shaded regions in Fig. 4). This annulus is of small extent under the parameters (Table 1) adopted to describe the dependence of the consumption of oxygen on its partial pressure. More troublesome is the implicit assumption that the ability of a muscle to develop active stress is unaffected by an anoxic region in which rigor bridges may develop, attended by an increase of stiffness. At the very least, passive force would be expected to increase, thereby probably diminishing the ability of the muscle to produce active stress. We make no attempt to accommodate this scenario.

Simulated Versus Experimental Results: an Order of Magnitude Discrepancy

Experimentally, at room temperature, we observed that both the stress and rate of heat production of cardiac trabeculae remain reasonably independent of muscle radius at low (0.2 Hz) stimulus frequency (Fig. 1). At the relatively high stimulus frequency of 4 Hz, muscle performance declined with muscle radius, at both 2 mM (Fig. 1) and 1 mM (Fig. 2A) \([Ca^{2+}]_o\). Under physiological conditions (37°C, 1.5 mM Ca\(^{2+}\)) and at 1-, 5-, or 10-Hz stimulus frequency, a radius-dependent decline of contractile performance was also observed (Fig. 2, B–D). We simulated these experimental data using literature values for model parameters and predicted a critical radius that was greater than that of any of the trabeculae examined (Figs. 5 and 6). This suggests that all of our preparations were fully oxygenated and that their radius-dependent decline of stress production cannot be attributed to a limited diffusive supply of oxygen. Indeed, to mimic the observed decline quantitatively, it was necessary to increase the metabolic rate of oxygen consumption, to decrease Krogh’s diffusion constant, or to decrease superfusate PO\(_2\) by at least an order of magnitude.

We created a 2-D model to examine the consequences of a comparatively very low rate of flow (on the order of 100-fold less than that commonly used in organ baths). Despite the consequent greatly reduced rate of provision of oxygen, the model predicted that even our thickest (diameter: 300 \(\mu\)m) and longest (4 mm) preparation, consuming oxygen at the “extreme rate,” would not have experienced an anoxic core at its downstream end. [Note that the predicted minimum value reached (120 Pa) was of the same order of magnitude as the P\(_{50}\) for oxygen consumption: 213 Pa (Table 1).] Nevertheless, the actual heat rate observed experimentally was only 0.58 of the predicted extreme heat rate, a discrepancy that cannot be attributed to insufficient oxygen supply under the assumptions of either our 1-D or 2-D mathematical models.

Schouten and ter Keurs (86) and Raman et al. (81) inferred \(R_{\text{crit}} \) values of 100 and 75 \(\mu\)m, respectively, based on their experimental findings that muscle stress production drops dramatically in preparations that exceed these observed radii. Our simulation results suggest that muscle cross-sectional area remains fully oxygenated up to radii of 160–220 \(\mu\)m, whereas experimentally measured stress production declines at considerably lower values (Figs. 7 and 8). We could simulate the \(R_{\text{crit}} \) values reported by Schouten and ter Keur (86) and by Raman et al. (81) by increasing the metabolic rate of oxygen consumption (or by decreasing either Krogh’s diffusion constant or the P\(_{O2}\) of the superfusate) by at least an order of magnitude. However, in each case, the required parameter values were wholly improbable.

Using parameter values gleaned from the literature, our model predicted that some of the large papillary muscle preparations of Schouten and ter Keur (86) were hypoxic since their radii were greater than the predicted \(R_{\text{crit}} \) (Fig. 8). However, the stresses produced by those putatively hypoxic preparations were still substantially less than the predicted values. A comparable mismatch was obtained when we examined the data of Cranefield and Greenspan (15) for quiescent papillary muscles from the cat, where the preparations predicted to be hypoxic had rates of oxygen uptake substantially lower than our predicted values (Fig. 9). Clearly, these results imply that inadequate diffusive supply of oxygen cannot entirely explain the lower stress production or lower rate of basal oxygen consumption of hypoxic muscles.

For completeness, we also simulated (data not included) the negative radius-dependent contractile performance observed by several other investigators (6, 19, 27, 30, 31, 53, 67). In every case, the smallest preparations were at least 250–300 \(\mu\)m in radius, which precludes the estimation of suitable values for maximum active stress production by small, and presumably fully oxygenated, preparations. As is evident from our data, as well as from those of Raman et al. (81) and Schouten and ter Keurs (86), even small preparations (radii < 200 \(\mu\)m) experienced decreased stress production with increasing radius.

Clearly, there is an unbridgeable disparity between measurement and simulation if the hypothesis that the inverse relationship between active stress development and muscle radius is to be upheld. But, that is not to deny that stress development varies inversely with radius. Indeed, Fisher and Kavalier (24) showed that this much-observed phenomenon prevails even in blood-perfused papillary muscles in situ. It thus appears that we must turn elsewhere to seek an explanation for the radius-dependent decline of contractile performance of small preparations and something more than oxygen diffusion limitation for large and hypoxic preparations. What factor(s) might contribute? At least six distinct possibilities, in three different categories, arise.

Structural differences. Possibility 1 is that trabeculae contain a variable amount of noncontractile (collagenous) extracellular tissue. However, the hyperbolic dependence of collagen content on radius (84) means that specimens of larger cross-sectional area have a greater proportion of their cross-sections occupied by contractile tissues and are thus capable of developing proportionately greater stress production. However, this is contrary to what is observed. Possibility 2 is that perhaps there exists some radius dependence of intracellular components that could provide an explanation. To investigate that possibility, Delbridge and Loiselle (19) sought ultrastructural differences in rabbit papillary muscles of disparate cross-sections. Contrary to their expectations, they found that the relative proportion of cross-sectional area occupied by mito-
chondrial and contractile matrix elements was invariant between large and small specimens.

Contractile pattern. Sarcomere inhomogeneity (possibility 3) has been proposed to play a role in reducing the active stress developed by thicker muscles. Several authors (19, 24, 53) have invoked this explanation, which would require that the degree of sarcomere inhomogeneity increases with increasing muscle diameter, resulting in a reduced capacity of larger muscles to operate at optimal filament overlap and, accordingly, less active stress development. In support of this contention, macroscopic structural inhomogeneity, in the form of nonuniform segmental length changes, has indeed been observed (24, 56, 79). Nevertheless, we remain sceptical since it is difficult to imagine how sarcomere inhomogeneity could produce a comparable radius-dependent decline of basal metabolism, as revealed by Cranefield and Greenspan (15) in quiescent papillary muscles.

Ions and metabolites. Although reduced intracellular K\(^+\) concentration (possibility 4) has an inhibitory effect on stress production (8, 9), no correlation between muscle size and intracellular K\(^+\) concentration was found by Page and Solomon (75), even in preparations as large as 650 \(\mu\)m in radius. We therefore consider it unlikely that a radius-dependent depletion of transmembrane K\(^+\) gradient arises. Possibility 5 involves glucose. In all of the experiments quoted, the exogenous metabolic substrate was glucose (5–10 mM). Perhaps the radius dependence of performance reflects the limited diffusion of glucose rather than oxygen. However, consideration of stoichiometries and concentration gradients argues to the contrary. The stoichiometry of glucose oxidation is 6 mol oxygen/mol glucose. But, the diffusion constant of glucose is about one-sixth that of oxygen (12, 38). Thus, the difference between the diffusion constants is offset by the difference in stoichiometry. Furthermore, at a bath concentration of 10 mM glucose, the maximal difference in concentration, from the surface of the muscle to its core, is 10 mol/m\(^3\), whereas that of oxygen is 1.4 mol/m\(^3\) (Table 1). Hence, the relative diffusivity (i.e., the ratio of the products of the diffusion constants and their concentration gradients) favors glucose by a factor of seven. Finally, Han et al. (40) demonstrated that varying glucose concentrations between 5 and 30 mM had a negligible effect on either the active stress or active heat production of rat trabeculae. Furthermore, given our modeling results, which showed an inadequacy of oxygen supply (Figs. 5–8), it seems unlikely that metabolites such as lactate or P\(_i\), which become elevated under anaerobic conditions, could be responsible (possibility 6). Nevertheless, we have examined this possibility in more detail, following the modeling approaches adopted by Stuyvers et al. (89) and Stienen et al. (88). We accounted for the negative sigmoidal dependence of muscle stress development (\(S\)) on P\(_i\) concentration as follows:

\[S(P_i) = S_{max} \left[\frac{S_2 - S_1}{P_i^{10} + P_i^{10}} \right] \]

(17)

Following Kentish (52), we made use of Hill’s analytic solution (42) for the rate of accumulation of a metabolite in a cylindrical muscle of radius \(R\), when its rate of production is \(\rho\), as follows:

\[S(R) = \frac{\rho}{8D_{Pi}} \times R^2 \]

(18)

where \(D_{Pi}\) is the diffusion constant for P\(_i\) [2.73 \(\times\) 10\(^{-10}\) and 4.05 \(\times\) 10\(^{-10}\) m\(^2\)/s, respectively, at 20 and 35°C (78)]. The results show that it is necessary to increase the simulated rates of P\(_i\) production by at least an order of magnitude to simulate the data shown in Fig. 13, A–D. These simulations show that, even if anoxia were to develop, the resulting accumulation of P\(_i\) would be insufficient to explain the observed radius dependence of stress production.

Conclusions

From the various studies (both our own and those of others) and our mathematical simulations (using literature values for both 1-D and 2-D model parameters), we conclude that the radius-dependent decline of twitch stress production arises, at least in part, from cellular or tissue mechanisms that are independent of diffusive oxygen supply. Equivalently, we infer that the radius-dependent decline of muscle twitch heat production reflects a decline of oxygen demand and not insufficiency of oxygen supply.

APPENDIX A: PARAMETER VALUES FROM THE LITERATURE

Tables A1–A3 show literature values for the various parameters.

APPENDIX B: PARAMETER SENSITIVITY ANALYSIS

In the Morris method, a parameter space is defined by setting upper and lower bounds on parameter values. Analysis trajectories through the parameter space are calculated to form a statistical sample of the effect of parameter changes on one or more objective functions. Here, 2 sets of 5,000 trajectories for each parameter were run independently on the 2 objective functions. This number of trajectories gave comparable results for two independent runs. The 2 sets of runs were then combined to achieve an overall population of 10,000 sensitivity measures. The average absolute effect of each parameter, within its defined range, on each objective function, was computed.

Following Cooling et al. (13), we determined the sensitivity of our model parameters (using the values appropriate for 22°C; Table 1) on two objective functions, namely, \(R_{crit}\) and \(A_{oxy}\) at \(R = 100\) μm. Each of the parameters was varied within ±32% of its tabulated magnitude (Table 1) except for \(P\), which was constrained to the range of 0.2 \(\times\) 10\(^{-5}\) to 1 \(\times\) 10\(^{-5}\) Pa.

Table B1 shows the sensitivity of the parameters and ranks their effects on the first objective function (\(R_{crit}\)). The four most sensitive parameters are \(P\), \(m\), \(D_i\), and \(\sigma\). For example, to change \(R_{crit}\) by 10 μm, only a change of ~8% of \(P\), on average, is required. Consequently, a 10% change in \(P\), on average, changes \(R_{crit}\) by ~12.5 μm. In contrast, the parameters representing the myoglobin terms (\(D_M\), \(C_M\), \(P_{MBT}\), and \(\delta_M\)) have comparatively negligible effects. Similar sensitivity rankings were obtained for the second objective function (\(A_{oxy}\) at \(R = 100\) μm).

ACKNOWLEDGMENTS

The authors thank Dr. M. T. Cooling for performing the parameter sensitivity analysis.

GRANTS

This work was supported by Marsden Fund (Royal Society of New Zealand) Project Grant 06-UOA-123.
Table A1. Literature values for K, D, and σ in muscle tissue

<table>
<thead>
<tr>
<th>Reference</th>
<th>Preparation</th>
<th>T, °C</th>
<th>K, 10^{-14} mol·m$^{-1}$·Pa$^{-1}$·s$^{-1}$</th>
<th>D, 10^{-9} m2/s</th>
<th>σ, 10^{-5} mol·m$^{-1}$·Pa$^{-1}$</th>
<th>Q_{10} for K</th>
<th>Q_{10} for D</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Rat cardiac trabeculae</td>
<td>37*</td>
<td>1.72*</td>
<td>1.09</td>
<td>1.11*</td>
<td>1.27*</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Guinea pig cardiac trabeculae</td>
<td>37</td>
<td>1.17</td>
<td>1.00</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Rat myocardium</td>
<td>20</td>
<td>1.40</td>
<td>1.50*</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Frog Sartorius muscle</td>
<td>22.8</td>
<td>1.74</td>
<td>1.08</td>
<td>1.61</td>
<td>1.06</td>
<td>1.24</td>
</tr>
<tr>
<td>49</td>
<td>Rat abdominal muscle</td>
<td>37</td>
<td>1.49</td>
<td>1.45</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Rat kidney tumor tissue</td>
<td>20</td>
<td>1.41</td>
<td>1.55</td>
<td>0.85</td>
<td>1.07</td>
<td>1.22</td>
</tr>
<tr>
<td>18</td>
<td>Chicken gizzard smooth muscle</td>
<td>37</td>
<td>1.01</td>
<td>1.42</td>
<td>1.07</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rat pancreatic islets</td>
<td>37</td>
<td>1.82</td>
<td>1.72</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Mouse kidney cortex</td>
<td>22</td>
<td>2.06</td>
<td>2.17</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rat fibrosarcoma SSB1a</td>
<td>37</td>
<td>2.28</td>
<td>2.21</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mouse Lewis lung carcinoma</td>
<td>37</td>
<td>2.28</td>
<td>2.21</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q_{10} was calculated using the values at 20°C and 37°C or at 22°C and 37°C. Using K of 1.72×10^{-14} mol·m$^{-1}$·Pa$^{-1}$·s$^{-1}$ at 37°C and Q_{10} for K of 1.11, K at 22°C was calculated to be 1.47×10^{-14} mol·m$^{-1}$·Pa$^{-1}$·s$^{-1}$. Using D of 1.50×10^{-9} m2/s at 37°C and Q_{10} for D of 1.27, D at 22°C was calculated to be 1.05×10^{-9} m2/s. σ was calculated from the ratio of K to D. *Values adopted for the model.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

Table A2. Literature values for D_M in muscle tissue

<table>
<thead>
<tr>
<th>Reference</th>
<th>Preparation</th>
<th>T, °C</th>
<th>D_M, 10^{-11} m2/s</th>
<th>Q_{10} for D_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Rat cardiomyocytes</td>
<td>22*</td>
<td>1.1*</td>
<td>1.49*</td>
</tr>
<tr>
<td></td>
<td>Rat soleus muscle</td>
<td>37*</td>
<td>2.0*</td>
<td>1.45</td>
</tr>
<tr>
<td>77</td>
<td>Rat soleus muscle</td>
<td>37</td>
<td>2.1</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Frog skeletal muscle</td>
<td>22</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Rat muscle homogenate</td>
<td>20</td>
<td>1.5</td>
<td>1.41</td>
</tr>
<tr>
<td>48</td>
<td>Rat skeletal muscle</td>
<td>22</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Q_{10} was calculated using the values at 22°C (or 20°C) and 37°C. *Values adopted for the model.

Table A3. Literature values for C_M

<table>
<thead>
<tr>
<th>Reference</th>
<th>Preparation</th>
<th>C_M, mol/dm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rat myocardium</td>
<td>0.20*</td>
</tr>
<tr>
<td>99</td>
<td>Cat myocardium</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>Human myocardium</td>
<td>0.20</td>
</tr>
<tr>
<td>20</td>
<td>Human heart</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*Values adopted for the models.
Table B1. Sensitivity ranking and effects of model parameters on R_{crit}

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Parameter</th>
<th>Units</th>
<th>Defined Sensitivity Range (With Respect to the Value at 22°C)</th>
<th>Percent Change in the Parameter Value to a Change in R_{crit} By 10 µm</th>
<th>Change in R_{crit} Upon a 10% Change in the Parameter, µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>Pa</td>
<td>0.20–1.01 × 10^-5</td>
<td>7.977</td>
<td>12.537</td>
</tr>
<tr>
<td>2</td>
<td>(m_a + m_b)</td>
<td>mol·m^{-1}·s^{-1}</td>
<td>±32%</td>
<td>14.068</td>
<td>7.108</td>
</tr>
<tr>
<td>3</td>
<td>α</td>
<td>m²/s</td>
<td>±32%</td>
<td>7.106</td>
<td>14.286</td>
</tr>
<tr>
<td>4</td>
<td>ρ</td>
<td>g/cm³</td>
<td>±32%</td>
<td>68,403.474</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>n_ω</td>
<td></td>
<td>±32%</td>
<td>881.474</td>
<td>14.231</td>
</tr>
<tr>
<td>6</td>
<td>D_M</td>
<td>m²/s</td>
<td>±32%</td>
<td>398.066</td>
<td>0.251</td>
</tr>
<tr>
<td>7</td>
<td>C_M</td>
<td>mol/kg</td>
<td>±32%</td>
<td>6,733.741</td>
<td>0.113</td>
</tr>
<tr>
<td>8</td>
<td>P_{max}</td>
<td>Pa</td>
<td>±32%</td>
<td>10,929.662</td>
<td>0.009</td>
</tr>
<tr>
<td>9</td>
<td>n_M</td>
<td></td>
<td>±32%</td>
<td>68,403.474</td>
<td>0.001</td>
</tr>
<tr>
<td>10</td>
<td>n_{max}</td>
<td></td>
<td>±32%</td>
<td>881.474</td>
<td>0.001</td>
</tr>
</tbody>
</table>

R_{crit}, critical radius. Parameters (column 2) were varied as indicated (column 4) around their “standard” values (Table 1; text), with the results as shown (columns 5 and 6).
