Relation between QT interval variability and cardiac sympathetic activity in hypertension

Mathias Baumert,1,2 Markus P. Schlaich,3,6 Eugene Nalivaiko,8 Elisabeth Lambert,4,7 Carolina Ika Sari,4 David M. Kaye,5,6 Murray D. Elser,4,6 Prashanthan Sanders,2,9 and Gavin Lambert4,6

1School of Electrical and Electronic Engineering, 2Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide; 3Neurovascular Hypertension and Kidney Disease Laboratory, 4Human Neurotransmitters Laboratory, and 5Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne; 6Faculty of Medicine, Nursing and Health Sciences, and 7Department of Physiology, Monash University, Melbourne; 8School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle; and 9Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia

Submitted 29 November 2010; accepted in final form 20 January 2011

Baumert M, Schlaich MP, Nalivaiko E, Lambert E, Ika Sari C, Kaye DM, Elser MD, Sanders P, Lambert G. Relation between QT interval variability and cardiac sympathetic activity in hypertension. Am J Physiol Heart Circ Physiol 300: H1412–H1417, 2011. First published January 21, 2011; doi:10.1152/ajpheart.01184.2010.—Elevated QT interval variability is a predictor of malignant ventricular arrhythmia, but the underlying mechanisms are incompletely understood. A recent study in dogs showed that QT variability was directly associated with sympathetic cardiac activity, had no association with QT variability in patients with panic disorder and depression, patients who were free of current underlying cardiovascular disease. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Increased QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure. In healthy humans, pharmacological activation or blockade of β-adrenoreceptors increased and reduced QT variability, respectively. Reduced QT variability was related to left stellate-ganglion activity, but only after the dogs had developed heart failure.
two different occasions. These were confirmed by intra-arterial BP measurements during catheterization. The study protocol was approved by the Alfred Hospital Ethics Review Committee, and all participants provided written informed consent.

The study commenced in the morning after an overnight fasting period >12 h with abstinence from smoking, alcohol, tea, and coffee.

Echoangiography. Two-dimensional-guided M-mode echocardiography was performed in all subjects, using a Sonos5500 (Agilent Technologies). LV dimensions and mass were quantified according to the recommendations of the American Society of Echocardiography (7). LV mass was corrected following the suggestions of Devereux et al. (10). Detailed results of the echocardiographic assessment have been previously presented (31).

Cardiac NE spillover measurement. This procedure has been previously described in detail (13). Participants received a tracer infusion of [3H]NE (specific activity of 11–25 Ci/mmol; New England Nuclear) via a peripheral vein at 0.6 to 0.8 µCi/min, after a priming bolus of 12 µCi under local anesthesia. The radial artery was cannulated for arterial BP monitoring and blood sampling. A venous introducer sheath was placed in the antecubital fossa, and a coronary sinus sheath was placed in the antecubital fossa, and a coronary sinus sheath was placed for cardiac catheterization. For the thermodilution catheter (Webster CCS 7/8U90A, Webster Laboratories), the sheath was placed in the antecubital fossa, and a coronary sinus sheath was placed in the antecubital fossa, and a coronary sinus sheath was placed for cardiac catheterization. The femoral artery was used for arterial BP monitoring. For the coronary sinus sheath, a coronary sinus catheter (Webster CCS 7/8U90A, Webster Laboratories) was placed in the coronary sinus for blood sampling. For the calculation of NE kinetics, coronary sinus blood flow was estimated based on previously published equations (13). Plasma concentrations of compounds required for the calculation of NE spillover were determined by high-performance liquid chromatography (20).

ECG analysis. Body surface ECG (lead III) was recorded at a sampling frequency of 1,000 Hz, using PowerLab and the LabChart software (ADInstruments). All ECG recordings were visually scanned to exclude artefacts. To obtain beat-to-beat QT intervals, we applied the algorithm proposed by Berger et al. (6). Here the operator defines a template QT interval by selecting the beginning of the QRS complex and the end of the T wave for one beat. The algorithm then finds the QT interval of all other beats by determining how much the template QT interval is extended or compressed. For the calculation of NE kinetics, coronary sinus blood flow was estimated based on previously published equations (13). Plasma concentrations of compounds required for the calculation of NE spillover were determined by high-performance liquid chromatography (20).

Table 1. Clinical characteristics of the study cohort

<table>
<thead>
<tr>
<th></th>
<th>NT</th>
<th>EH</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Sex, men/women</td>
<td>7/2</td>
<td>17/6</td>
</tr>
<tr>
<td>Age, yr</td>
<td>38 ± 13</td>
<td>44 ± 12</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>22.8 ± 3.9</td>
<td>28.1 ± 5.8*</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>65 ± 6</td>
<td>62 ± 10</td>
</tr>
<tr>
<td>Intra-arterial systolic BP, mmHg</td>
<td>128 ± 12</td>
<td>166 ± 14*</td>
</tr>
<tr>
<td>Intra-arterial diastolic BP, mmHg</td>
<td>68 ± 7</td>
<td>84 ± 8*</td>
</tr>
<tr>
<td>Left ventricular mass index, g/m²</td>
<td>89 ± 13</td>
<td>128 ± 29*</td>
</tr>
<tr>
<td>Total cholesterol, mmol/l</td>
<td>4.80 ± 0.77</td>
<td>5.40 ± 0.95</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/l</td>
<td>2.98 ± 0.57</td>
<td>3.41 ± 0.86</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/l</td>
<td>1.31 ± 0.34</td>
<td>1.26 ± 0.36</td>
</tr>
<tr>
<td>Plasma sodium, mmol/l</td>
<td>142 ± 3</td>
<td>142 ± 2</td>
</tr>
<tr>
<td>Plasma potassium, mmol/l</td>
<td>4.2 ± 0.3</td>
<td>4.3 ± 0.3</td>
</tr>
</tbody>
</table>

Values are means ± SD; n, number of subjects. NT, normotensive; EH, essential hypertensive. *P < 0.01.

RESULTS

Demographic data, cardiovascular indexes, and serum biochemical data of the study cohort are presented in Table 1. Body mass index, intra-arterial BP, and LV mass index were significantly higher in hypertensive patients compared with normotensive subjects. At the time of testing, 21 out of 23 patients had isolated systolic hypertension. There were no significant group differences in biochemical markers.

Parameters of NE kinetics are presented in Table 2. Mean arterial plasma NE concentration and average NE clearance were not significantly different between normotensive and hypertensive subjects. As noted previously (31), whole body NE spillover was elevated in hypertensive patients compared with normotensive subjects. Coronary sinus plasma flow and fractional transcardiac [3H]NE extraction were comparable between both groups. Cardiac NE spillover was increased in hypertensive subjects and correlated with systolic BP (r² = 0.20, P = 0.009, Fig. 1) but not with diastolic BP. However, when excluding the outlier, this correlation became nonsignificant.

ECC parameters are detailed in Table 3. The QTvi was significantly elevated in hypertensive patients compared with normotensive subjects. None of the other QT measures was significantly different between groups. Correlation analysis revealed a significant relationship between QT interval variability (QTVN) and cardiac NE spillover (r² = 0.31, P = 0.001). Subgroup correlation analysis, performed separately for the normotensive and the hypertensive group, showed a significant correlation between QTVN and cardiac NE spillover in hypertensive subjects (r² = 0.38, P = 0.002, Fig. 2) but not in normotensive subjects. Furthermore, QTVN was correlated with resting systolic BP (all subjects; r² = 0.16, P = 0.02, Fig. 1). There was no significant correlation between QTvi and cardiac NE spillover.

Comparing QTVN to other ECG-based indexes revealed moderate significant correlations with QTvi (r² = 0.17, P = 0.002, Fig. 2) but not with diastolic BP. However, when excluding the outlier, this correlation became nonsignificant.

Table 2. NE plasma kinetics

<table>
<thead>
<tr>
<th></th>
<th>NT</th>
<th>EH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial NE plasma concentration, pg/ml</td>
<td>198 ± 42</td>
<td>260 ± 100</td>
</tr>
<tr>
<td>Coronary sinus NE plasma concentration, pg/ml</td>
<td>194 ± 55</td>
<td>253 ± 704*</td>
</tr>
<tr>
<td>Coronary sinus plasma flow, ml/min</td>
<td>82.6 ± 16.6</td>
<td>90.6 ± 29.2</td>
</tr>
<tr>
<td>Fractional transcardiac [3H]NE extraction, %</td>
<td>0.69 ± 0.11</td>
<td>0.59 ± 0.15</td>
</tr>
<tr>
<td>NE plasma clearance, ml/min</td>
<td>1,302 ± 520</td>
<td>1,557 ± 620</td>
</tr>
<tr>
<td>Whole body NE spillover, ng/min</td>
<td>254 ± 115</td>
<td>402 ± 209*</td>
</tr>
<tr>
<td>Cardiac NE spillover, ng/min</td>
<td>12.2 ± 6.5</td>
<td>20.7 ± 14.7*</td>
</tr>
</tbody>
</table>

Values are means ± SD; n, number of subjects. NE, norepinephrine. *P < 0.05.

H1413
RRVN ($r^2 = 0.20, P = 0.008$), QTv ($r^2 = 0.94, P < 0.001$), and RRv ($r^2 = 0.25, P = 0.04$). Subgroup correlation analysis between QTVN and RRVN revealed a significant association between both in hypertensive patients ($r^2 = 0.33, P = 0.004$) but not in normotensive patients (Fig. 3). There was no significant correlation between RRVN and cardiac NE spillover.

Stepwise multiple linear regression analysis with QTVN as the dependent variable and all other measures obtained in this study as independent variables identified only cardiac NE spillover ($\beta = 0.54, t = 3.6, P < 0.002$) and RRVN ($\beta = 0.43, t = 2.8, P = 0.01$) as independent predictors, resulting in a significant model with an adjusted $R^2 = 0.51$ (ANOVA; $P < 0.001$).

DISCUSSION

Our major novel finding is the relationship between directly assessed cardiac sympathetic activity and beat-to-beat QT variability in humans. The amount of cardiac NE spillover is correlated to the magnitude of beat-to-beat fluctuations of the QT interval in patients with hypertension.

In our cohort of hypertensive patients, QTVi and cardiac NE spillover were elevated compared with normotensive subjects, demonstrating that ventricular repolarization lability and cardiac sympathetic activation are increased, which is in line with previous findings (26). Moreover, a correlation analysis of our data provides the first direct evidence that the magnitude of QT variability is related to cardiac sympathetic activation in hypertensive patients. QT variability was also partially correlated with systolic BP, possibly demonstrating the relationship between myocardial contractility and QT variability.

Table 3. QT interval variability

<table>
<thead>
<tr>
<th></th>
<th>NT</th>
<th>EH</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>QT$_{m}$, ms</td>
<td>395 ± 51</td>
<td>397 ± 50</td>
</tr>
<tr>
<td>QTv, ms</td>
<td>409 ± 39</td>
<td>403 ± 44</td>
</tr>
<tr>
<td>QT$_{V/R}$ coherence</td>
<td>-1.75 ± 0.36</td>
<td>-1.42 ± 0.50*</td>
</tr>
<tr>
<td>QTV/RR coherence</td>
<td>0.49 ± 0.22</td>
<td>0.36 ± 0.18</td>
</tr>
<tr>
<td>QTVN × 1,000</td>
<td>0.09 ± 0.06</td>
<td>0.13 ± 0.11</td>
</tr>
<tr>
<td>RRVN × 1,000</td>
<td>5.02 ± 4.60</td>
<td>4.22 ± 5.63</td>
</tr>
</tbody>
</table>

Values are means ± SD; n, number of subjects. QT$_{m}$, mean QT interval; QT, corrected QT interval; QTv, QT variability index; QTVN, QT variability; RRVN, RR variability. *$P < 0.05$.

Fig. 1. Relationship between cardiac norepinephrine (NE) spillover and systolic blood pressure (BP; A) and between systolic BP and QT interval variability (QTVN; B).

Fig. 2. Relationship between QTVN and cardiac NE spillover in hypertensive patients (A) and normotensive subjects (B).
It is well established that the average QT interval of the body surface ECG is modulated by the autonomic nervous system (11, 37), and our data suggest that this autonomic influence extends to beat-to-beat fluctuations of the QT interval. Although the underlying mechanisms are currently unknown, the lack of homogeneity of β-adrenoceptors and variable arborization of the sympathetic nerves (25, 37) may contribute to spatial dispersion in the action potential duration in the ventricular myocardium and thereby increase QT interval variability during periods of higher sympathetic activity. In support of this view, patients with autonomic failure and heterogeneous sympathetic denervation showed prolonged QT intervals and increased spatial QT dispersion (8). β-Adrenoceptor activation by isoproterenol has been shown to increase beat-to-beat QT variability in healthy subjects during sinus rhythm (35), and β-adrenoceptor blockade with propranolol decreased QT variability during atrial pacing in patients without structural heart disease, observations suggestive that QT variability is modulated by the sympathetic nervous system (23). However, a study of left stellate-ganglion activity in healthy dogs showed no correlation with QT variability (28), indicating that spontaneous QT variability in the normal heart is not notably affected by the sympathetic outflow to the ventricular myocardium.

Our current data suggest a more differentiated picture. QT variability in humans appears to be associated with cardiac sympathetic activity but not in resting subjects without an underlying cardiovascular condition. In agreement with our earlier work on patients with depression and panic disorder (2), the normotensive subjects in our current study did not show a relationship between cardiac NE spillover and QT variability. However, the novel finding of this study is that in hypertensive patients, QT variability was moderately correlated with cardiac NE spillover. Normotensive subjects might not display such a correlation because resting NE spillover levels are low and sympathetic activation might be required for the correlation between cardiac NE spillover and QT variability to occur. In support of this view, graded head-up tilt of healthy subjects has shown to progressively increase the fraction of QT variability that is independent of RR variability and respiration and is possibly related to sympathetic activation (30). Alternatively, an additional change in the cardiac substrate might be necessary for the correlation between cardiac NE spillover and QT variability to occur. In line with this view, dogs displayed a relationship between left stellate-ganglion activity and QT variability, but only after they developed heart failure (28), suggesting that myocardial structural damage as well as sympathetic activation may be required.

The mechanisms by which subjects develop an association between cardiac sympathetic activity and QT variability are not clear. Results from selective versus combined pharmacological block of slow and rapid outward potassium currents in rabbits and dogs imply that a reduction in repolarization reserve may be an important mechanism for augmenting QT variability (21). A study of isolated canine myocytes found that isoproterenol infusion during slow delayed rectifier K+ current block increased the beat-to-beat variability of repolarization (18). There are several lines of evidence for an association between sympathetic activation and subclinical organ damage in humans (19). Sympathetic activation promotes LV hypertrophy (31) and LV diastolic dysfunction (16). In particular, the density and distribution of adrenoceptors throughout the ventricular myocardium might be altered. Global and regional cardiac [123I]metaiodobenzylguanidine uptake was shown to be altered in hypertensive patients with LV hypertrophy compared with normotensive subjects (15).

Although cardiac NE spillover was the main contributor to QT variability in our hypertensive patients, it explained only around 30% of its variance. Stepwise linear regression analysis further identified RR variability as an independent contributor to QT variability that accounts for a small portion of variance (~15%) and most likely reflects electrical restitution (14). The relationship between cycle length and action potential duration is complex and involves long-lasting adjustments (14), and therefore the association between QT variability and RR variability is rather weak. Dynamic linear parametric modeling of the RT-RR relationship suggests that, in particular, very low frequency power of RT variability is largely independent of RR variability in normal subjects (29). Furthermore, multiscale entropy and detrended fluctuation analyses of the QT time series revealed markedly different temporal organization and complexity compared with the RR time series and provided additional evidence for the weak dependence of beat-to-beat QT variability on RR variability.
variability on RR variability (M. Baumert, M. Javorka, A. Seeck, R. Faber, and A. Voss; unpublished observations).

In clinical research, beat-to-beat QT variability is often considered in its normalized form QTVi, i.e., as the ratio of QT variability to RR variability, both divided by the squared means of QT and RR intervals, respectively. The interpretation of this simple index is rather difficult. Instead of removing the part of QT variability that is attributed to heart rate, RR variability is explicitly introduced into the equation. Consequently, a change in QTVi can be caused by a change in QT variability and/or RR variability. As the magnitude of RR variability is usually higher than that of QT variability and resting RR variability is not correlated with cardiac NE spillover (3, 24), the lack of association between QTVi and cardiac NE spillover is not unexpected.

Technical considerations and limitations. Beat-to-beat fluctuations in the QT interval are typically small, and measurement noise might have a considerable impact on QT variability measures. In this study we were only able to record one ECG lead. Because QT variability is dependent on the recording site, we consistently used lead III. Because of the invasive nature of the study, the control group was relatively small, which limited the statistical power of our study. We therefore cannot exclude the possibility of a weak correlation between cardiac NE spillover and QT/V in normal subjects. One subject in the hypertensive group had very high QT/V and cardiac NE spillover values and might have been the major driver of the significant correlation. However, the correlation between cardiac NE spillover and QT/V remained significant when excluding this subject from the analysis.

Conclusions. A cross-sectional analysis of patients with hypertension shows a moderate yet significant correlation between cardiac NE spillover and beat-to-beat QT variability. QT interval variability in patients with cardiovascular disease may therefore partly reflect cardiac sympathetic activation.

ACKNOWLEDGMENTS

We acknowledge the contribution of Flora Socratous in assisting with the clinical investigations.

GRANTS

This study was supported by grants from the National Health and Research Council of Australia (NHMRC) and the National Heart Foundation (NHF) of Australia. M. Baumert is supported by a fellowship from the Australian Research Council. E. Lambert, M. P. Schlaich, D. M. Esler, and G. Lambert are supported by fellowships from the NHMRC. E. Nalivaiko is supported by a fellowship from the NHF of Australia.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

