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Vaniotis G, Allen BG, Hébert TE. Nuclear GPCRs in cardiomyocytes: an insider’s
view of �-adrenergic receptor signaling. Am J Physiol Heart Circ Physiol 301: H1754–
H1764, 2011. First published September 2, 2011; doi:10.1152/ajpheart.00657.2011.—In
recent years, we have come to appreciate the complexity of G protein-coupled
receptor signaling in general and �-adrenergic receptor (�-AR) signaling in
particular. Starting originally from three �-AR subtypes expressed in cardiomyo-
cytes with relatively simple, linear signaling cascades, it is now clear that there are
large receptor-based networks which provide a rich and diverse set of responses
depending on their complement of signaling partners and the physiological state.
More recently, it has become clear that subcellular localization of these signaling
complexes also enriches the diversity of phenotypic outcomes. Here, we review our
understanding of the signaling repertoire controlled by nuclear �-AR subtypes as
well our understanding of the novel roles for G proteins themselves in the nucleus,
with a special focus, where possible, on their effects in cardiomyocytes. Finally, we
discuss the potential pathological implications of alterations in nuclear �-AR
signaling.
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The three �-adrenergic receptor (�-AR) subtypes were ini-
tially believed to comprise rather simple and linear signaling
cascades involving the receptor, the Gs heterotrimer and acti-
vation of adenylyl cyclase (AC). This organization required
nothing but a series of sequential agonist-driven interactions:
first between the ligand and the receptor, then the receptor and the
G protein, and finally between the activated G protein and the
effector. Essentially, this would be similar in all cell types that
expressed each receptor. In the case of the cardiomyocyte, the
�1-AR driving this pathway was primarily responsible for the
chronotropic and inotropic effects of sympathetic stimulation.
However, it has been more recently appreciated that all three
receptor subtypes could also interact with other G proteins such as
the pertussis toxin (PTX)-sensitive Gi heterotrimer [reviewed in
(31)], presumably not simply to provide an inhibitory stimulus to
the same effector enzyme, AC, but also to contribute to signaling
diversity. Since then, it has become clear that each receptor
interacts with a wide array of signaling pathways, some of which
depend directly on G protein-dependent signaling and others
which involve agonist-dependent recruitment of G protein-
coupled receptor (GPCR) kinases and �-arrestins [reviewed

in (82)]. In cardiomyocytes, �1-ARs, localized to the sarco-
lemma and tubular network, play a predominant role in
regulating cardiomyocyte contractility. The �2-AR, which
shares this distribution, plays a more modest role in regu-
lating the inotropic and lusitropic responses. Both receptors
signal through Gs and AC with similar efficacy, although the
signals are compartmentalized differently, possibly because
of localization in distinct membrane microdomains and/or
dual coupling of the �2-AR to Gs and Gi [reviewed in (125,
127, 146)]. �3-ARs are also found in cardiomyocytes, al-
though their function remains ill defined. In fact, transgenic
mice knocked out for both the �1-AR and �2-AR show
markedly reduced contractile phenotypes despite the pres-
ence of the �3-AR (22). Hence the �-AR subtypes may serve
unique functions and play nonredundant roles within the
cardiomyocyte.

Signaling from �-AR Localized to the Nuclear Membrane

Once believed to be primarily involved in the desensitization
and internalization of GPCRs, �-arrestin-dependent signaling
events, it has become clear, enrich the phenotypic diversity of
signaling but also deliver receptor-dependent signals to distinct
subcellular targets. This second wave of signaling is thought by
some authors to be essentially G protein independent [see for
example (94, 99)]. Receptor internalization, therefore, is no
longer simply a way of desensitizing receptors. Internalization
of GPCRs may lead to a switch in signaling pathways by
desensitizing the primary, second messenger-based or cell
surface-based pathways while simultaneously activating a sec-
ond wave of signaling in endosomal compartments. However,
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the discovery of G protein-independent, or “post G protein,”
signaling events still implicates an initial surface targeting
event for GPCRs.

Nuclear GPCR-Mediated Signaling

An increasing number of GPCRs have been demonstrated to
be targeted to the nuclear membrane, including lysophospha-
tidic acid receptors (39), metabotropic glutamate receptors
[MGluR5 (53, 68, 92)], apelin receptors (73), platelet-activat-
ing factor receptors (85), bradykinin B2 receptors (73), angio-
tensin II type I and type II receptors (14, 73, 80, 129, 153),
prostaglandin receptors (40), endothelin receptors (5), and
�1-ARs [(38, 142), reviewed in (7, 41)]. Also, mutant V2

vasopressin receptors, which are trapped in intracellular com-
partments, can signal in response to nonpeptide agonists, indi-
cating that they are in fact functional even when mistrafficked
(104).

In addition, a large number of signaling proteins, classically
associated with receptor-mediated events at the cell surface
including heterotrimeric G proteins [(8, 40, 151), reviewed in
(26, 28, 141)], AC isoforms (118, 147), phospholipase A2

(117), phospholipase C� (59) and phospholipase D (35), reg-
ulator of G protein signaling (RGS) proteins [reviewed in
(11)], �-arrestin-1 (120, 135), GPCR kinases (52, 148, 149), A
kinase anchoring proteins, and PKA (113), among others, have
been demonstrated to be trafficked to the nucleus and/or
nuclear membrane. Interestingly, enzymes involved in the
generation and metabolism of phosphoinositides (4) or the
processing of peptide ligands such as angiotensin-converting
enzyme (81) and endothelin-converting enzyme-1 (51) have
also been localized to the nuclei of different cell types. Fur-
thermore, these “intracrine” signaling loops are not restricted
to GPCRs and may include a number of other classes of “cell
surface” receptors as well, such as activin-like kinase-1 types 4
and 5, TGF-� superfamily receptors responsive to activin A
(42), and VEGF receptors [(74), reviewed in (18)]. Although
these data, taken together, suggest that these nuclear GPCRs
are relevant to cell physiology since they seem to be present
constitutively in native cell systems, it remains to be conclu-
sively demonstrated whether they have defined roles in the
context of intact cells, rather than isolated nuclei.

Molecular Mechanisms of Nuclear Signaling by �-AR.

Although most nuclear GPCRs seem to regulate proximal
signaling pathways (i.e., involving generation of second mes-
sengers or activation of ERK1/2 and Akt) similar to those seen
at the cell surface [reviewed in (7)], a number of these recep-
tors more directly regulate nuclear events such as DNA syn-
thesis (139), transcription initiation (6) and gene expression
(53, 116, 134), and histone modification (100).

We demonstrated that cardiac �1- and �3-ARs (6, 134) were
targeted to endomembrane locations in cardiomyocytes where
they are functional with respect to cellular signaling. Interest-
ingly, subcellular fractionation experiments in adult rat ven-
tricular cardiomyocytes indicated colocalization of �-AR with
Nup-62, a marker of the nuclear membrane. To more carefully
characterize the distribution and possible physiological rele-
vance of the three receptor subtypes, we complemented these
studies with immunocytochemistry, ligand-binding studies and
functional assays using primary tissue that has certainly turned

out to be a key requirement for convincing journal reviewers
and colleagues. Functional �-ARs were localized to the nuclear
membrane, and more importantly, this localization was subtype
specific. Surprisingly, our experiments showed that �1-AR and
�3-AR, but not the �2-AR, distributed to the nuclear membrane
and that the former two �-AR isoforms subserve different
functions (6). Interestingly, both receptors were differentially
coupled to signaling pathways in isolated heart nuclei. The
�1-AR activated AC, presumably through Gs, whereas the
�3-AR modulated transcriptional initiation in a PTX-sensitive
manner, presumably through Gi. Furthermore, we showed that
both rRNA (18S rRNA) and mRNA (NF-�B and components
related to its signaling pathways) levels were modulated by
�-AR stimulation (134). All of the transcriptional events me-
diated by �-AR stimulation in isolated cardiac nuclei were
sensitive to inhibitors of ERK1/2, p38, and JNK as well as Akt,
suggesting that these signaling systems all impact on the tone
of nuclear GPCR signaling.

Our initial findings regarding changes in Akt and ERK status
after receptor stimulation in isolated nuclei (134) essentially
found that the three MAPK (including upstream regulators
such as MEK and Raf1) and Akt (including the downstream
target GSK�) pathways were active in isolated cardiac nuclei
treated with isoproterenol (data not shown). In our hands, only
Akt was activated by the �-AR in isolated nuclei. Therefore,
the other signaling pathways likely modulate nuclear �-AR
signaling via molecular cross talk (134) in response to numer-
ous signals. In an effort to understand signaling networks
activated by nuclear �-AR, we have recently begun to deter-
mine whether receptor stimulation alters the phosphorylation
status of nuclear proteins using standard one- and two-dimen-
sional electrophoretic approaches. In these experiments, nuclei
were treated with isoproterenol, phosphoproteins enriched us-
ing gallium-immobilized metal ion affinity chromatography
and resolved on one-dimensional (Fig. 1, middle) or two-
dimensional gels (immobilized pH gradient gel/SDS-PAGE,
Fig. 1, left and right), and phosphoproteins were visualized
with SYPRO ruby fluorescent stain. Changes in the patterns of
the nuclear phosphoproteome are evident in both sets of ex-
periments, highlighting the dynamic nature of �-AR signaling
in intact nuclei. Further experiments should thus be aimed at
identifying proteins where the phosphorylation status has been
altered.

Perhaps most interesting was the observation that the inhi-
bition of Akt “switched” isoproterenol from an agonist to an
inverse agonist with respect to transcriptional initiation; that is,
in the presence of triciribine, isoproterenol reduced levels of
RNA synthesis below that of the unliganded control (134). The
ability of different ligands to discriminate between signaling
pathways coupled to a given GPCR has been termed “biased”
agonism (57). Such biased signaling has been well demon-
strated for all three �-AR subtypes. For example, it has been
shown that different �-AR agonists have varying capabilities to
activate AC or ERK1/2 MAPK signaling pathways down-
stream of either the �1-AR or the �2-AR. It was also noted that
certain neutral antagonists and even inverse agonists for the
AC pathway turned out to be agonists for the ERK1/2 pathway
[(2, 36), reviewed in (31, 37, 94)]. It has been recently shown
that certain classical �-blockers, such as carvedilol, act as
agonists for a prosurvival pathway in the heart involving the
�1-AR, �-arrestin, and transactivation of the EGFR leading to
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MAPK activation (60, 91, 132). These findings are likely to
have significant clinical consequences for the development of
more appropriate �-blockers (and likely a shift in our use of
this term to biased ligands) for use in treating heart failure.
Similar patterns of biased agonism have emerged for the
�3-AR (114, 115). Ligands, once classified according to results
obtained with a single signaling readout, need to be reassessed
according to their ability to act as biased ligands in a pathway-
specific manner and, indeed, in a compartment-specific man-
ner.

It has also become clear in recent years that most if not all
GPCRs can form dimers and possibly higher order structures
[see (10, 46, 87, 98) for review]. Receptor heterooligomeriza-
tion can alter both signaling profiles and/or receptor trafficking
[reviewed in (10, 87, 98, 131)]. Not surprisingly, all three
�-AR subtypes have been shown to form heterodimers with
each other. The �2-AR can heterodimerize with both other
subtypes (9, 71, 72, 86). Trafficking was altered in both cases.
In the �1-AR/�2-AR heterodimer, the characteristics of the
�1-AR predominated, such that the heterodimer trafficked and
signaled like the �1-AR expressed alone both in HEK293 cells
(72) and in adult mouse ventricular cardiomyocytes (152). The
pharmacology of ligand binding was altered in this pair in that
ligands for both receptors needed to be present to achieve
high-affinity binding of subtype-selective ligands (71). In the
case of the �2-AR/�3-AR heterodimer, this pair trafficked like
the �3-AR expressed alone and was also unable to couple to Gi,
unlike either of the two parent receptors when expressed alone
(9). To date, no direct demonstration has been provided for
interactions between the �1-AR and the �3-AR, which may be
important given their unique nuclear distribution in cardiomy-
ocytes. One wonders though if these two receptors can het-
erodimerize on the nuclear membrane. If so, it will now be
necessary to reevaluate the pharmacology of nuclear receptor
signaling in that context.

Most studies evaluating the signaling downstream of nuclear
GPCRs have obviously relied on isolated nuclei. Studies have
been performed measuring the production of second messen-
gers such as cAMP and Ca2� using imaging techniques in
isolated cardiomyocytes, but these have all relied on ligands

delivered to the cell surface (75, 96). Thus particular contri-
butions of nuclear signaling in this regard need to be evaluated
carefully. Since the identification of nuclear GPCRs, many
questions have arisen regarding the sources of ligands that
activate them. In cases where ligands are synthesized in the
same cells as the receptors, such as angiotensin II (129) or
endothelin (5), intracrine signaling loops are easily imaginable.
Hydrophobic ligands that cross membranes such as prostaglan-
dins are also easily envisaged to attain intracellular receptors.
However, for hydrophilic ligands such as epinephrine or nor-
epinephrine, this becomes intrinsically more difficult: one must
invoke the presence of some sort of active or passive transport
mechanism. Interestingly, it has already been demonstrated
that [3H]norepinephrine, incubated with intact cells, can accu-
mulate in the nuclei of neonatal ventricular cardiomyocytes
(12). It is also clear that �-AR and other GPCRs can exist in an
active state (or states) even in the absence of agonist (16, 112).
This constitutive activity led to the identification of the class of
receptor ligands known as inverse agonists and to an appreci-
ation that most GPCRs existed in at least two states which
could be toggled toward active by agonists and in the opposite
direction by inverse agonists [see (37, 56, 58) for review]. This
constitutive activity itself may thus be an important component
of nuclear GPCR signaling [reviewed in (7)].

A further consideration as to why it will be important to
demonstrate the effects of nuclear GPCRs in an intact cell
setting is as follows. As can be seen in Fig. 2, there are two
possible orientations for nuclear GPCRs, one with the receptor
COOH-terminus facing the nucleoplasm and the other facing
the cytosol. A number of GPCRs contain nuclear localization
sequences (73). It is possible that these sequences allow GP-
CRs to use the nuclear pore complexes to “turn the corner” and
move from the outer to inner nuclear membrane. This suggests
that the accumulation of the ligand within the perinuclear
space, that compartment between the inner and outer nuclear
membrane, might also result in signals delivered in two direc-
tions simultaneously. For adrenergic and other small ligand-
activated receptors to have intracellular effects, one must
consider an uptake mechanism to deliver ligands endomem-
brane compartments, in contrast to ligands, discussed above,

Fig. 1. �-Adrenergic receptor (�-AR) stimulation results in alterations in the nuclear phosphoproteome. Isoproterenol (Iso) alters protein phosphorylation patterns
in nuclei isolated from rat ventricular myocardium. Enriched nuclear fractions were resuspended in a buffer comprising 150 mM Tris·HCl (pH 7.9), 450 mM
KCl, 3 mM MnCl2, 18 mM MgCl2, 3 mM ATP, 6 mM DTT, and 3 U/ml RNAse inhibitor and incubated in the presence or absence of 1 �M Iso for 30 min.
Incubations were terminated by addition of trichloroacetic acid to a final concentration of 10%. Following centrifugation, supernatants were aspirated, pellets
were washed with acetone and resuspended using 6 M urea, and the soluble proteins were applied to 1 ml HiTrap Chelating HP columns preequilibrated with
GaCl3. Phosphoproteins were eluted using 6 M urea, 50 mM Tris-acetate (pH 7.4), 100 mM EDTA, and 100 mM EGTA, resolved by SDS-PAGE and visualized
with SYPRO ruby. Left and right: changes detected in the abundance of phosphorylated proteins in the absence (left) or presence (right) of Iso when
two-dimensional gels are used. The pH gradient is shown along the top of each gel. Middle: arrows indicate selected bands on one-dimensional SDS-PAGE
having altered abundance (increased or decreased) as a result of stimulation with Iso. CTL, control; MWt, molecular weight.
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that are made intracellularly (e.g., angiotensin II, endothelin, or
glutamate) or ligands that can cross membranes (e.g., prosta-
glandins and other lipid mediators). With respect to cat-
echolamines, the classic reuptake system found in neurons is
unlikely to operate in cardiomyocytes. However, there are
nonselective uptake systems such as extraneuronal monoamine
transporter (or organic cation transporter 3) found in several
tissues including heart [(30, 43), reviewed in (54)], which
could transport catecholamines to intracellular targets in car-
diomyocytes. Independent of mechanism, the most important
study in this regard found that in neonatal rat cardiomyocytes,
extracellular [3H]norepinephrine was taken up, and indeed a
large fraction was detected in the nuclear fraction within hours
(12). Intriguingly, this is a very hydrophilic ligand, suggesting
that optimizing the properties of a subpopulation of the large
number of available �-AR ligands might make it possible to
design ligands that specifically target the internal receptor pool.
Whether this is true or not can only be confirmed in an intact
cell context, which is surely the next challenge facing research-
ers in this area.

Nuclear G Protein-Mediated Signaling

Heterotrimeric G proteins transmit numerous stimuli from
cell surface GPCRs to various intracellular effector molecules
as enzymes and ion channels. The heterotrimer is composed of
�- and ��-subunits. G� subunits bind and hydrolyze GTP and
were classically believed responsible for most effector activa-
tion effects. More recent work has shown that G�� subunits
are also key regulators of cellular signaling events but also
serve a broader role in organizing the assembly and trafficking
of receptor-based complexes in intracellular compartments
such as the endoplasmic reticulum (ER) and Golgi apparatus
[(108), see (28) for review]. Recently, a number of studies have
indicated a direct nuclear impact for G�� subunits. G�1�2
dimers can interact directly with histone deacetylase 5
(HDAC5) and possibly other HDAC isoforms as well (124). In
the basal state, HDAC5 interacts with the muscle differentia-
tion factor, myocyte enhancer factor 2 (MEF2), resulting in
reduced transcriptional activity. Following stimulation of the
�2A-AR, activated G�� dimers interacted with HDAC5, re-
leasing MEF2 and allowing it to stimulate transcriptional
activity. Both the G�i/o inhibitor PTX and the G�� scavenger,
�-AR kinase COOH terminus, inhibited MEF2 activity (124).
It remains uncertain as to whether cytoplasmic G�� dimers
sequester HDAC or whether these events exclusively occur in
the nucleus.

G�5 subunits interact with a number of RGS proteins. One
RGS class, the R7 subfamily, is enriched in brain and functions
as part of a stable RGS-G�5 complex, which is localized to
both the cytosol and the nucleus (151). The R7BP protein
interacts with the R7-G�5 pair and potentiates the capacity of
this complex to modulate inwardly rectifying K� (Kir)3 chan-
nels in response to M2 muscarinic receptor stimulation (24).
R7BP is palmitoylated, and this interaction allows anchoring of
RGS7-G�5 at the plasma membrane to regulate GPCR signal-
ing. However, the addition of palmitate is a transient and
tightly regulated process (123). In this case, the loss of the
palmitate moiety on R7BP releases the R7BP-RGS7-G�5
complex from the plasma membrane and shuttles it to the
nucleus. Other RGS proteins that are also localized to the
nucleus include RGS6, which can regulate transcription in
mammalian cells (76). The precise role of these proteins in the
nucleus remains uncertain at present. These authors proposed
this as a novel mechanism for transmitting neurotransmitter
signals from receptors at the plasma membrane directly to the
nucleus [for review (47)]. Interestingly, mutant G�5 subunits
unable to form a complex with RGS7 but still capable of
interacting with G�2 were not found in the nucleus of either
HEK293 or PC12 cells, suggesting the importance of the RGS
protein in the nuclear localization of G�5 (109).

It has been shown that G�� subunits containing the other G�
isoforms can interact with the transcriptional repressor known
as the adipocyte enhancer-binding protein (AEBP1) (93).
AEBP1 specifically forms a complex with G�� subunits con-
taining G�5 in nuclei of 3T3-L1 but interestingly not NIH 3T3
cells. The G��5/AEBP1 interaction attenuates its transcrip-
tional repression activity. Another G�� effector is the gluco-
corticoid receptor (GR) localized in the cytoplasm and trans-
located to the nucleus in response to ligand binding, where
several target genes are transcriptionally regulated. Both G�1-
and G�2 subunits directly interact with the GR and translocate

Fig. 2. Possible orientation of nuclear �-AR signaling complexes. Both the
�1-AR, coupled to Gs, and the �3-AR, coupled to Gi, but not the �2-AR, are
resident on the nuclear membrane, at least in rat and mouse adult ventricular
cardiomyocytes (6, 134). How these receptors are trafficked to distinct endo-
membrane compartments is not well understood and could either be a result of
receptor internalization from the cell surface or via de novo delivery from the
biosynthetic pathway. The outer nuclear membrane is continuous with both the
endoplasmic reticulum (ER) and the inner nuclear membrane, with which it is
joined at the level of nuclear pore complex insertion. Ligand must be able to
attain the space between the two nuclear membranes to activate these recep-
tors, or receptors must be constitutively active. The possibility that there may
be two distinct orientations for nuclear G protein-coupled receptors (GPCRs),
i.e., either capable of delivering signals toward the cytosol or the nucleoplasm,
is something that can only be explored in an intact cell context. Also, what the
role of the nuclear pore complex is in determining the sidedness of nuclear
GPCR signaling remains to be determined. C, COOH-terminus; N, NH2-
terminus; AC, adenylyl cyclase; PI3K, phosphatidylinositol 3-kinase.
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with it to the nucleus following treatment with the agonist
dexamethasone (61, 62). The interaction of G�� with GR
suppresses transcriptional activity most likely by associating
with transcriptional complexes formed on GR-responsive pro-
moters. G�2 mutants unable to bind G� cannot suppress GR
transcriptional activity. These studies begin to highlight a
central role of G�� in numerous subcellular compartments,
directly regulating fundamental processes as diverse as tran-
scription and protein trafficking in the ER and Golgi. G��
subunits are more than simply signaling molecules responsive
to GPCR stimulation.

We have recently shown that the coexpression of G��
decreased PMA-stimulated activating protein-1 (AP-1) gene
reporter activity in different cell lines (107). We identified Fos
transcription factors as novel interactors of the G�� subunits.
G�� did not interfere with the dimerization of Fos and Jun or
the ability of AP-1 complexes to bind DNA. Rather, G��
colocalized with the AP-1 complex in the nucleus and recruited
HDACs to inhibit AP-1 transcriptional activity as determined
using chromatin immunoprecipitation in contrast to their effect
on MEF2 (124). This novel role for G�� subunits as transcrip-
tional regulators may be potentially independent of their clas-
sical functions as mediators of GPCR signaling.

Recently, a number of novel interactors of G�� have been
identified, as have G��-dependent signaling events, some of
which are independent of the receptor per se [for review, see
(28)]. Interestingly, a number of these events occur at subcel-
lular sites distinct from the plasma membrane. Among these, a
number of nuclear targets for G�� have been identified. The
modulation of prenylation status has been shown to increase
the amount of G�� in the nucleus associated with the GR (61,
62). Recent reports have indicated that a subpopulation of G�
subunits may escape from being prenylated and thus remain
soluble (19). This may suggest that some of the transcriptional
effects of G�� may in fact be receptor independent and depend
on protein complexes formed with “free” G�� or G protein
heterotrimers (Table 1). In fact, under basal conditions, we
noted the presence of G�� subunits in many cell types include
cardiomyocytes, suggesting they may be resident there (101).
These observations suggest that G�� subunits may be more
general transcriptional regulators. It is known that cFos tran-
scription is activated by several GPCRs. M2 muscarinic recep-
tor stimulation leads to activation of the cFos promoter, and
this event is mediated through G�� and is dependent on ERK

and JNK (128). On one hand, the activation of heterotrimeric
G proteins leads to the activation of cFos transcription,
whereas on the other hand, a subsequent interaction of G��
with AP-1 proteins decreases transcriptional activity, provid-
ing, in effect, a negative feedback loop. STAT3 is another
transcription factor that may be a target for dual GPCR and
G�� regulation (150). The source of G�� for these two classes
of events may in fact be different; i.e., the formation of
G��/transcription factor complexes may not necessarily be
receptor dependent and these proteins may interact directly
following their biosynthesis or there may be a pool of “free”
G�� in the cell. In preliminary experiments, we noted that an
overexpression of G�q did not alter the response of an AP-1
reporter gene to the presence of G��, suggesting that these
latter two possibilities must be considered (S. Gora and T. E.
Hébert, unpublished study). Interestingly, the G�1 promoter
contains several putative AP-1 response elements (63). De
novo synthesis or release of G�� may therefore result from
increased levels of Fos synthesis. All five G� subunits inhib-
ited AP-1 activity in reporter assays, suggesting that this is a
common feature of G�� signaling (107).

Ontogeny of GPCR and G Protein Signaling Systems: How
Do They Get to the Nucleus?

Little is known at present as to how GPCRs and their
attendant signaling partners traffic to distinct subcellular loca-
tions such as the nuclear membrane. It is possible that de novo
complexes of GPCRs and their signaling partners assembled
along the biosynthetic pathway might also be delivered to
endomembrane locations in addition to the cell surface. Tran-
sient receptor/G protein/effector interactions, which explain G
protein-mediated signal transduction in the mammalian visual
system, cannot account for the exquisite signaling specificity
seen in cells such as cardiomyocytes or neurons. These latter
cell types, which may express dozens of possible receptor/G
protein heterotrimer/effector combinations, exhibit high signal-
ing fidelity in vivo from one receptor activation cycle to the
next. In vitro studies, where promiscuous coupling is often
seen, have not reflected this [reviewed in (44, 45)]. Particular
combinations of heterotrimeric G proteins have been demon-
strated to couple GPCRs to particular effectors (1, 55, 64–66,
105, 106, 119, 136–138). The possibility that receptors and G
proteins might be associated before receptor activation has

Table 1. Are G�� interactors strictly dependent on GPCR activation?

Nuclear Effectors Subcellular Location (Site of Action) References

RGS-R7 proteins (G�5) Nucleus 47, 151
AEBP1 (G��5) Nucleus 93
Glucocorticoid receptor (G�1 and G�2), possibly GPCR independent Cytosol/nucleus 61, 62
HDAC5 (G�1-5, G�2) Cytosol/nucleus 107, 124
AP-1 complex (G�1-5, G�2), possibly GPCR independent Nucleus 107
STAT3 (multiple G�� combinations), possibly GPCR independent Nucleus 150
ERK1/2 MAPK Nucleus 78, 79

Canonical G��-interacting proteins may initially interact with G�� subunits in the endoplasmic reticulum during biosynthesis (reviewed in Ref. 28) but are
usually associated with G protein-coupled rceptor (GPCR) signaling at the plasma membrane. However, a number of transcriptional regulators also interact with
G�� subunits in the cytosol or in the nucleus. Studies described in the text suggest that if G� subunits in a G�� dimer are not prenylated, and presumably not
targeted to the plasma membrane, they accumulate in the nucleus. This suggests the possibility that some such G�� subunits may signal in a GPCR-independent
manner. How the cell organizes these different possible signaling complexes is unclear at present. Specific G� or G� subunits known to interact with particular
transcription factors are shown in parentheses. RGS, regulator of G protein signaling; AEBP, adipocyte enhancer-binding protein; HDAC5, histone deacetylase
5; AP-1, activating protein-1.
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been incorporated into models of G protein signaling for some
time (140), but experimental evidence that stable “precoupled”
complexes exist in living cells has been obtained only rela-
tively recently. A large number of studies have demonstrated
association, copurification, or coimmunoprecipitation of recep-
tors with G proteins [reviewed in (95, 102)].

Interestingly, receptor dimerization has been demonstrated
to be required for efficient surface localization of a number of
GPCRs, including the �2-AR (27, 111) and the �1B-AR [(77)
reviewed in (88)]. In fact, significant evidence has accumulated
that the assembly of GPCR signaling complexes occurs during
their biosynthetic journey, rather than in response to agonist
stimulation at the plasma membrane. We have studied the
ontogeny of GPCR signaling complexes [initially focusing on
�1-AR and �2-AR (70) as well as AC (3, 25) and Kir3 channels
(21, 103, 108)]. Our data suggested that these complexes form
during biosynthesis rather than through random, agonist-in-
duced interactions at the plasma membrane. First, these inter-
actions occur in the absence of receptor agonists, suggesting
that signaling complexes are preassembled (25, 27, 103), and
many of these proteins interact initially in the ER, including
monomer equivalents in receptor dimers, receptor and G��
subunits as well as effectors such as Kir3 channels, and AC
with nascent G��. These interactions were all insensitive to
dominant negative Rab1 or Sar1 (DN Rab1 and Sar1, but not
Rabs 2, 6 or 11) constructs (25, 27), which regulate antero-
grade receptor trafficking [reviewed in (23, 26)]. It has recently
been demonstrated that different Rab isoforms are important
for both the initial membrane targeting of GPCRs [Rab1 (29,
33)] as well as for their internalization and recycling to the

plasma membrane in response to agonist stimulation [Rabs 4,
5, 7 and 11 (20, 121, 122)]. This has implications for the
trafficking of GPCR signaling complexes to the nuclear mem-
brane, although no studies to date have assessed the roles of the
Rabs or for that matter the cytoskeletal trafficking machinery in
targeting these signaling systems. Although all of the receptors
discussed in this article have been shown to be present consti-
tutively in isolated nuclear membranes, it remains an open
question as to how they are trafficked there or whether they can
be internalized from the cell surface to nuclear compartments
(Fig. 3, left).

Implications of Nuclear Signaling in Cardiac Health and
Disease

Cardiac hypertrophy is induced by elevated hemodynamic
load in vivo and by a number of neurohumoral factors (includ-
ing angiotensin II, �-adrenergic agonists, endothelin-1, and
growth factors) in vitro. Many of the receptors for these ligands
have in fact been localized to the nucleus, but this has been
never generally considered in studies of cardiac hypertrophy or
heart disease. �1-AR and �2-AR are known to differentially
regulate contractile function as well as other signaling path-
ways in the cardiomyocyte. Both receptor subtypes modulate
L-type channel activity and mediate the positive inotropic
effects, but only the �1-AR seems to modulate the relaxation
phase of the contractile cycle [see (126, 144) for review]. This
is due to both differential subcellular distributions of each
receptor and also to distinct G protein coupling. Recent studies
have shown that the �1-AR is exclusively coupled to Gs,

Fig. 3. Novel transcriptional complexes containing tran-
scription factors (TFs), proteins kinases, and G�� sub-
units. Left: both cell surface and nuclear GPCRs may
activate local signaling proteins including G proteins,
�-arrestin, and nuclear protein kinases that modulate the
activity of TFs. However, it remains to be determined
what the links are between these two pools of receptor.
Are nuclear GPCRs trafficked from the cell surface or
de novo during their biosynthesis? Right: as described
in the text, a number of novel chromatin interacting
complexes have been identified that translate signaling
events into changes in gene expression. Recent studies
have shown that Akt, MAPK isoforms, and G�� sub-
units all interact with TFs and associated chromatin
regulatory molecules such as histone deacetylase
(HDAC) isoforms and actually interact with targets on
the genome as well. Whether or not all of these intra-
cellular events require nuclear or cell surface GPCRs or
G� subunits remains to be determined. As discussed,
we need to move these studies into an intact cell context
to find out.
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whereas the �2-AR is coupled to both Gs and Gi (69, 143, 145).
Gi coupling serves to limit the physical distance the Gs signal
can diffuse in the cytosol after �2-AR activation, thus phos-
pholamban, which is critical for the lusitropic response, is not
phosphorylated. This differential coupling may also be re-
flected in the proapoptotic effects of �1-AR stimulation and the
antiapoptotic effects of �2-AR stimulation in the context of the
development of heart failure (15, 17). A clear role for �3-AR
has not been established in the progression to heart failure, but
a recent study showed that mice deficient in this receptor are
more sensitive to pressure overload induced by transverse
aortic constriction (90). Interestingly, the expression of �-AR
kinase COOH-terminal domain, the G�� inhibitor, in the
adrenal gland has already shown promise as a strategy to
mitigate the progression of heart failure (83), as have small
molecule inhibitors of G�� signaling delivered intraperitone-
ally in a mouse model of heart failure (13). Also, all studies to
date in this regard have focused on cell surface receptors,
although evidence is emerging that intracrine signaling loops
involving internal pools or GPCRs such as the angiotensin II
receptor and their ligands are important in cardiovascular
disease (101, 129). However, these events remain unexplored
at the molecular level. Both Akt (50) and ERK1/2 (79) provide
survival signals to the myocardium during the progression
from compensated hypertrophy to end-stage heart failure. In-
terestingly, one novel hypertrophic pathway mediated by
ERK1/2 signaling in the heart involved G�� subunits, which
facilitate phosphorylation of ERK1/2 at sites distinct from
those activated by canonical upstream kinases (78). We have
shown that �-AR activation in isolated heart nuclei leads to a
decrease in the transcription of NF-�B and some of its signal-
ing partners (134). Interestingly, the activation of this pathway
is linked with the development of heart failure (34, 110). Thus
nuclear �-AR-mediated regulation of this pathway at the tran-
scriptional level might be compensatory and involved in its
antiapoptotic action. The links between the development of
cardiac hypertrophy and changes in �-AR- and/or G��-depen-
dent nuclear signaling need to be explored in greater detail in
future studies.

Integrating Signaling Events Driven by Cell Surface and
Nuclear GPCRs and G Proteins

The connections between nuclear GPCRs and nuclear G
proteins (which likely function as independent proteins that
may be regulated by mechanisms distinct from receptors) or
between cell surface and nuclear receptors remain to be disen-
tangled. It is clear that G proteins may impact nuclear function
downstream of both cell surface and nuclear-localized GPCRs.
Although the nuclear localization of G�� dimers has been
described, the molecular mechanisms involved in controlling
interactions between G�� and AP-1 (or other transcriptional
regulators) remain to be elucidated. cFos is known to shuttle
between the nucleus and cytoplasm (48, 84, 130). A recent
study has demonstrated an interaction between ERK1/2 and
G��, leading to an autophosphorylation of ERK1/2 on Thr188
and a subsequent accumulation of ERK1/2 in the nucleus (78).
Whether ERK1/2 and G�� translocate to the nucleus as part of
a complex remains unknown (Fig. 3). Interestingly, both Akt
and ERK have numerous nuclear effects [reviewed in (67, 89,
133)], including being part of transcriptional complexes that sit

on different sites in chromatin in different types of transcrip-
tional complexes [(49, 97), as does p38 (32), see Fig. 3, right].
We do not yet know whether the G�� effects depend on prior
activation of cell surface or nuclear GPCRs or are dependent
on pools of “free” G�� (Fig. 3, right). The development of
specific ligands that can discriminate between surface and
nuclear GPCRs will be of great utility in dissecting these
events.

Conclusions

Taken together, these studies suggest that GPCRs do not
have to reach the cell surface to act as signaling entities as a
distinction from receptors that continue to signal (even acti-
vating different signaling pathways) after they are internalized.
An important current focus for molecular pharmacologists is to
target single pathways associated with a given GPCR. The
current focus on pathway-selective, biased ligands is providing
optimism that these approaches may actually work. However,
until recently, we have focused both on orthosteric ligand
binding sites and cell surface-localized signaling systems,
which may not provide the necessary level of discrimination.
We would argue that targeting the assembly or trafficking of
signaling complexes to different subcellular destinations might
actually provide an even more “selective” set of biased “as-
sembly modulators.” However, much work remains to identify
the molecular determinants of signaling complex assembly in
these different cell organelles before this particular strategy can
yield drug candidates for the treatment of heart disease and
other maladies and/or interesting tool compounds.
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