Intermedin elicits a negative inotropic effect in rat papillary muscles mediated by endothelial-derived nitric oxide

Ana Luísa Pires, Marta Pinho, Cristina Maria Sena, Raquel Seica, and Adelino F. Leite-Moreira

1Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto; and 2Department of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Submitted 2 September 2011; accepted in final form 3 January 2012

Intermedin elicits a negative inotropic effect in rat papillary muscles mediated by endothelial-derived nitric oxide. Am J Physiol Heart Circ Physiol 302: H1131–H1137, 2012. First published January 6, 2011; doi:10.1152/ajpheart.00877.2011.—Intermedin (IMD) is a novel vasoactive peptide from the calcitonin gene-related peptide (CGRP) superfamily with a putative role in cardiovascular regulation, named intermedin (IMD) or ADM II (25, 32). Since previous studies in vivo and isolated cardiomyocytes documented contradictory results. We hypothesized that IMD negative inotropic effect in isolated myocytes exogenous administration of IMD1–47 induced a significant increase in P-cTnI when compared with untreated muscles, while in L-NAME-pretreated papillary muscles IMD failed to increase P-cTnI. Finally, we found that stimulation of both EE and microvascular endothelial cells with IMD significantly enhanced NO production upon IMD stimulation. Our findings establish IMD negative inotropic effect in isolated myocardium due to NO/cGMP pathway activation with concomitant thin myofilament desensitization by increase in cTn phosphorylation and provide a coherent explanation for the previously reported contradictory results.

OVERTWELING DATA SUPPORT the role of neurohumoral regulation in the cardiovascular system, as illustrated by the fact that some neurohumoral agents due to their pathophysiological function in cardiac disease have become important therapeutic targets (22). In this context, numerous studies have continued to search for new neurohormones. Among the targeted peptid families is the calcitonin gene-related peptide (CGRP) family, which includes some key neurohormonal regulators with cardioprotective function, such as adrenomedullin (ADM) and CGRP, which also a pathophysiologically and cardioprotective effect for IMD similar to ADM.

Concerning IMD cardiovascular effects, evidence from in vivo and isolated perfused heart studies demonstrated a vasodilator and hypotensive action similar to that of ADM (5, 25, 32). However, the myocardial effects remain controversial, since intravenous administration of IMD1–47 promotes a positive inotropic action, while another group using IMD1–47 observed a cardiac depressive effect accompanied by cAMP level increase (24, 35). Moreover, in isolated murine cardiomyocytes exogenous administration of IMD1–47 induced a positive inotropic effect dependent on protein kinase A (PKA) and PKC activation, concomitant with intracellular calcium release (6). Similarly, other studies investigating ADM myocardial effects have already encountered distinct inotropic action depending on the animal species and type of preparation used. In isolated rat papillary muscles and atrial cardiomyocytes, ADM elicits a positive inotropic effect (15), while it has no activity in human ventricular cardiomyocytes (26), and evokes a negative response in rabbit cardiomyocytes dependent on nitric oxide (NO) synthesis and activation of a cyclic GMP-dependent mechanism (16).

Similar to other family members IMD biological action is mediated by the G-protein-coupled receptors calcitonin receptor and calcitonin receptor-like receptor (CL), with their activity and pharmacological specificity being dependent on receptor activity-modifying proteins (RAMPs) (21). For instance, the CL/RAMP1 complex forms the main
IMD does not exhibit selectivity for any of the three receptor complexes.

Regarding intracellular signaling pathways mediating IMD myocardial action, little is known and most information is extrapolated from IMD vascular studies and known second messenger pathways of other CGRP family peptides. A widely held hypothesis is the existence of two main mechanisms responsible for CGRP family peptides vasodilator action, one endothelium dependent, involving NO-cGMP pathway activation, and one endothelium independent, involving cAMP increase and PKA activation (9, 17, 36). Nonetheless, the function of cardiac endothelial cells as a possible modulator of IMD myocardial action remains unexplored.

Given the conflicting results regarding the myocardial action of IMD, as well as the lack of information concerning it modulation by cardiac endothelial cells, we investigated, the direct effects of exogenous IMD on myocardial performance and explored the role of endothelial cells and potential underlying mechanisms, including receptors, second messenger pathways, and intracellular targets.

METHODS

The study was performed in isolated left ventricular (LV) papillary muscles from Wistar-Han rats (Rattus norvegicus; 200–300 g). Rats were anesthetized with intraperitoneal pentobarbital sodium salt (60 mg/kg). After cardectomy, the LV was opened and the papillary muscles were dissected free from the LV wall using a dissecting microscope in a bath with Krebs solution, cardioplegic 2,3-butanedione monoxtme (BDM; 3%), and 5% newborn calf serum. After were anesthetized with intraperitoneal pentobarbital sodium salt (60 mg/kg), the heart was removed and placed in a bath containing physiological solution (in mM): 98 NaCl, 4.7 KCl, 2.4 MgSO4, 1.2 KH2PO4, one monoxime (BDM; 3%), and 5% newborn calf serum. After a 15-min stabilization period, the muscles were mounted vertically in a 10-ml plexiglass organ bath containing Krebs solution that was composed of the following (in mM): 98 NaCl, 4.7 KCl, 2.4 MgSO4, 1.2 KH2PO4, 4.5 glucose, 1.8 CaCl2, 17 NaHCO3, 15 sodium pyruvate, and 5 sodium acetate. The lower muscular end was fixed in a phosphor-bronze clip, and the upper tendinous end was attached to an electromagnetic length-tension transducer (University of Antwerp, Antwerp, Belgium; Ref. 20). Preload was initially set between 3 and 4 mN according to muscle dimensions. The preparations were stimulated at 0.6 Hz with a voltage of 10% above threshold (typically 30–60 mV) by rectangular pulses of 5-ms duration through two platinum electrodes arranged longitudinally alongside the entire muscle. After 10 min, bathing solutions were replaced by corresponding Krebs-Ringer solutions without 2,3-butanedione monoxtme and the muscle started to contract. Fifteen minutes later, the bathing solution was replaced by corresponding Krebs-Ringer solutions with 2,3-butanedione monoxtme and the muscle started to contract. During the next 15 to 30 min, the muscles stabilized. Finally, the muscles were stretched to a muscle length at which active force development was maximal (Lmax). Protocols were initiated after obtaining two similar isotonic and isometric control twitches separated by a 5-min interval. Throughout the entire experiment, the temperature was set at 30°C. At the end of the experiment, the muscles were removed, lightly blotted, and then weighed. Muscle cross-sectional area was calculated by dividing the weight of the muscle by its length at Lmax. A cylindrical shape and a specific density of 1.0 were assumed. Muscle tension was then expressed as force normalized per cross-sectional area (mN/mm).

Experimental protocols. Effects of increasing concentrations of IMD (10−10 to 10−6 M) on myocardial contraction and relaxation parameters were studied in rat papillary muscles after selective removal of the endothelium endocardium (EE) by a brief (1 s) immersion of the papillary muscle in a weak solution (0.5%) of the detergent Triton X-100 (3, 4), followed by abundant wash with Triton-free KR solution. In addition, rat papillary muscles with intact endothelium were studied in the following conditions: 1) baseline conditions (IMD; n = 6); 2) in the presence of human AM22-52; (C159H252N40O48; AM22-52; 10−6 M; n = 6), a selective antagonist of AM1 and AM2 receptors; 3) in the presence of CGRP8−37; (C319H230N44O38; CGRP8−37; 10−6 M; n = 6), a selective antagonist for CGRP receptors; 4) in the presence of the NO synthase inhibitor Nω-nitro-L-arginine (L-NAME; 10−5 M; n = 7); 5) in the presence of a selective inhibitor of guanylyl cyclase (1H-[1,2,4]oxadiazolo[4,4-a]quinolin-1-one (ODQ; 10−6 M; n = 5); 6) L-NAME in association with AM22-52; (L-NAME + AM22-52; 10−5 + 10−6 M; n = 6); and 7) L-NAME in association with CGRP8−37; (L-NAME + CGRP8−37; 10−5 + 10−6 M; n = 5). All substances were added to the bath after the addition of IMD. Muscle twitches were recorded after a stable response was obtained. Isotonic and isometric twitches were recorded and analyzed. Selected parameters include active tension (AT; mN/mm²) and maximum velocity of tension rise (dT/dtmax; mN·mm−2·s−1). When a pharmacological inhibitor was used or the EE damaged, the term baseline refers to the experimental condition in presence of those inhibitors or after EE damaging before the addition of intermedin. At the end of experiments, the papillary muscles were immediately freeze with liquid nitrogen and kept in −80°C freezer until use for protein quantification.

Western blot analysis. Western blot analysis was applied to evaluate levels of total cardiac troponin I (cTnI) and phosphorylated cTnI (P-cTnI) in papillary muscle after the experimental protocol. Briefly, tissues were homogenized on ice in 1 ml RIPA lysis buffer containing PMSF (1 mM), aprotonin (10 μg/ml), leupeptin (10 μg/ml), and pepstatin (10 μg/ml) all from Sigma Chemical (St. Louis, MO) as the protease inhibitors. Tissue was then centrifuged at 14,000 g for 20 min at 4°C. The supernatants were collected, and the total protein concentration was determined. Samples containing 40 μg of protein were loaded on to a 12% SDS-PAGE gel, run, and electroblotted onto PVDF membrane. Prestained molecular weight marker proteins were used as standards for the SDS-PAGE. Ponceau staining was performed to verify the quality of the transfer and to ensure equal protein loading. Blots were blocked in 5% skimmed nonfat milk in PBS for 1 h, treated overnight with antibody against cTnI or P-cTnI, and then incubated with alkaline phosphatase secondary antibodies for 1 h. Immunoblots were developed with an ECF Western blotting detection system (Amersham Biosciences). Protein content was determined using a Bio-Rad protein assay kit.

EE and microvascular endothelial cell culture. Cardiac microvascular endothelial cells (MVE) and EE cells were isolated and cultured as previously described (23). Only endothelial cells after 1 wk of isolation were used for experiments, since we observed reduction in NO production after passages 1 and 2. Confluent cell cultures were serum starved for 1 h before the start of the experiments. Purity of the cell cultures has been demonstrated previously (12).

Determination of nitrite production upon IMD stimulation. EE and MVE plated in 12-well culture plates were exposed to IMD for periods of 3, 6, and 10 min, and medium was assayed for nitrite with the Griess reaction. Nω-monomethyl-L-arginine was added to determine the role of NOS. Acetylcholine (Sigma) was used as a positive control.

Chemicals and solutions. All chemicals were obtained from Sigma Chemical with the exception of IMD, AM22-52, and CGRP8−37, which were obtained from Bachem (Bubendorf, Switzerland). Most of the stock solutions, including IMD, were prepared in distilled water and stored as frozen aliquots at −20°C until use, with the exception of ODQ, which was dissolved in DMSO (<0.1% in the bath).

Statistical analysis. Values are presented as means ± SE, and n represents the number of papillary muscles. Effects of increasing concentrations of IMD were analyzed by one-way repeated-measures ANOVA. Effects of a single concentration of IMD in the various experimental conditions were analyzed by one-way ANOVA. When significant differences were detected with any of the ANOVA tests,
the Tukey test was selected to perform pair-wise multiple comparisons. \(P < 0.05 \) was accepted as significant.

Experiments were subjected to the Portuguese law on animal welfare and conform to the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85–23, Revised 1996), having been performed at the Faculty of Medicine of the University of Porto, which is a governmental institution granted by the Ministério da Agricultura to perform animal research in accordance with the Decreto-Lei n°129-92.

RESULTS

Baseline performance of rat LV papillary muscles was similar in all experimental protocols. With exception of CGRP inhibitor (CGRP\(_{8-37}\)) and NO inhibition with \(l\)-NAME addition, which induced a significant increase in contractile parameters (AT by 11 ± 7 and 21 ± 7\%; \(dT/dt_{\text{max}} \) by 19 ± 5 and 31 ± 5\%, respectively), no other receptor antagonists or inhibitors significantly changed basal muscle performance.

Effect of IMD on myocardial performance and receptors involved. IMD (10\(^{-10}\) to 10\(^{-6}\) M) had a dose-dependent negative inotropic effect, maximum after 3 min, at which time we observed for the maximum concentration of 10\(^{-6}\)M a significant decrease (vs. baseline) of AT by 14 ± 4\% (Fig. 1A; \(P \leq 0.01 \); and \(dT/dt_{\text{max}} \) by 10 ± 4\%; Fig. 1B; \(P \leq 0.05 \)) with no significant effects in any other parameter. The effect of IMD was further tested in the presence of receptors antagonists AM\(_{22-52}\) and CGRP\(_{8-37}\), both of which significantly blunted IMD negative contractile response (Fig. 1, A and B; \(P \leq 0.05 \)). These findings suggest an inhibitory function of IMD on myocardial contractility mediated by AM and CGRP receptors.

Role of EE removal and NO synthase and guanylyl cyclase. Selective removal of EE blunted IMD negative inotropic response (Fig. 2; \(P \leq 0.05 \)). Furthermore, \(l\)-NAME not only blunted but even reversed IMD effects, inducing a small and slower (maximum response 6 min after administration) consistent positive inotropic response (Fig. 2, A and B). In the presence of \(l\)-NAME, the IMD maximum concentration induced increased in AT by 7 ± 3\% and \(dT/dt_{\text{max}} \) by 9 ± 3\% (Fig. 2; \(P \leq 0.05 \)).

Second messenger pathway and receptors involved in the positive inotropic effect of IMD upon NO synthase inhibition. Guanylyl cyclase inhibition with ODQ (10 \(\mu \)M) promoted a positive inotropic response similar to NO inhibition, characterized by a 12 ± 6\% increase in AT and 23 ± 7\% increase in \(dT/dt_{\text{max}} \) (Fig. 3; \(P \leq 0.05 \)). We used PKA inhibitor H89 in association to \(l\)-NAME to explore the involvement of the cAMP/PKA pathway in IMD-induced positive inotropic response upon NO inhibition (Fig. 3). In Fig. 3, it is visible that PKA inhibition inhibited IMD-positive inotropic response. These results suggest PKA involvement in the IMD-positive inotropic response in conditions of NO depletion. Use of receptor antagonists in association with \(l\)-NAME to explore the receptor responsible for this positive inotropic response revealed opposing responses in AM\(_{22-52}\) and CGRP\(_{8-37}\) (Fig. 4). The presence of CGRP\(_{8-37}\) reverted the positive inotropic response of IMD + \(l\)-NAME, which induced now again a negative inotropic effect, characterized by a decrease in AT by 11 ± 5\% and \(dT/dt_{\text{max}} \) by 7 ± 4\%. On the contrary, the presence of AM\(_{22-52}\) did not significantly alter the positive inotropic

Fig. 1. Effect of increasing concentrations of intermedin (IMD; 10\(^{-10}\) to 10\(^{-6}\) M) alone (IMD; \(n = 6 \)) or in the presence of receptor antagonists AM\(_{22-52}\) (IMD + AM\(_{22-52}\); \(n = 6 \)) or calcitonin gene-related peptide 8–37 (IMD + CGRP\(_{8-37}\); \(n = 6 \)) on active tension (AT; \(A \)) and peak rate of tension rise (\(dT/dt_{\text{max}} \); \(B \)). *\(P < 0.05 \) vs. baseline; #\(P < 0.05 \) vs. IMD.

Fig. 2. Effect of increasing concentrations of IMD (10\(^{-10}\) to 10\(^{-6}\) M) in papillary muscles with an intact (IMD; \(n = 6 \)) or damaged endocardial endothelium (EE); IMD-EE; \(n = 6 \)) in the presence of NO synthase inhibition N\(^{\ominus}\)-nitro-\(l\)-arginine and intact EE (IMD + \(l\)-NAME; \(n = 7 \)) or damaged EE (IMD + \(l\)-NAME-EE; \(n = 5 \)) on AT (\(A \)) and \(dT/dt_{\text{max}} \) (\(B \)). *\(P = 0.05 \) vs. baseline; #\(P = 0.05 \) vs. IMD.

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00877.2011 • www.ajpheart.org
response of IMD + l-NAME. These results suggest role of CGRP receptors in the positive inotropic response of IMD in the presence of NO inhibition.

IMD stimulated cTnI phosphorylation dependent on NO. Papillary muscles treated with increasing concentrations of IMD analyzed in immunoblots, presented a significant increase in P-cTnI, when compared with untreated muscles, which was characterized by an increase in the ratio of P-cTnI to total cTnI (Fig. 5). IMD addition to l-NAME pretreated papillary muscles failed to promote the increase in cTnI phosphorylation observed by a smaller increased in ratio of P-cTnI to total cTnI (Fig. 5). These results suggest that IMD stimulated cTnI phosphorylation mediated by the NO pathway.

Effect of IMD on NO production by endothelial cells. Further experiments in which cultured EE and MVE cells were stimulated with IMD (10^{-6} M) revealed a significant increase in nitrite production by 40 ± 8% (Fig. 6; \(P \leq 0.05 \)). These results suggest an important role of endothelial cells in myocardial response to IMD through NO production.

DISCUSSION

This study used a combination of functional, pharmacological, biochemical, and cell culture approaches to explore the myocardial effects of IMD and their underlying mechanisms. The main findings of the present study include the negative inotropic effect of IMD in rat papillary muscles, mediated by endothelial NO/cGMP pathway upon AM and CGRP receptor activation that leads to cTnI phosphorylation. Until now, the myocardial actions of IMD were controversial, with previous studies (6, 24, 32) in the intact heart (both in vitro and in vivo) revealing contradictory results to those observed in isolated cardiomyocytes. Moreover, the receptors and intracellular signaling pathways responsible for those actions were not comprehensively characterized. In the vasculature, there is now evidence that endothelial cells modulate IMD biological actions (24). We therefore hypothesized that endothelial and microvascular endothelial cells might also influence IMD effects on cardiac function, providing an explanation for the contradictory results in previous studies. To test this hypothesis, we evaluated the myocardial effects of IMD in rat papillary muscles in the presence of a NO synthase inhibitor and upon disruption of the endothelial endothelium. Additionally, aiming to unmask the receptors and pathways involved, myocardial performance was evaluated in the presence of several inhibitors and receptor antagonists. Furthermore, biochemical evidence was obtained by quantifying cTnI phosphorylation and therefore unveiling the role of myofilament desensitization in the myocardial response to IMD. Finally, the direct role of IMD in cardiac endothelial cells was confirmed by evaluating the IMD effects on NO production from cultured cardiac endocardial and microvascular endothelial cells.

Contractile effects of IMD. Similar to the in vivo studies (24, 35), we observed that exogenous administration of IMD induces a negative inotropic effect in rat LV papillary muscles, characterized by a significant decrease in muscular AT and rate of tension rise. The contractile effects of IMD were completely abolished by the receptor antagonists AM22–52 and CGRP8–37 in agreement with the general idea of IMD unspecific binding to the three receptor complexes identified to date (25). On the
contrary, studies in isolated murine cardiomyocytes documented a positive inotropic action of IMD mediated by PKA and PKC activation (6, 24). Comparison of the CGRP family peptides contractile effects reveals diverse responses, depending on the animal species, experimental preparation, and cardiac chamber. In isolated cardiomyocytes, ADM, similarly to IMD, induced a positive inotropic action (30), while in rat papillary muscles diverse contractile effects of AMD were reported (15, 29). With regard to αCGRP, a positive inotropic effect was consistently reported (1, 14, 26). Concerning the role of cardiac endothelial cells in the modulation of CGRP peptide family contractile response, previous studies (8) from our and other groups showed that the negative inotropic action of AMD is mediated by EE in rabbit papillary muscles. However, the role of these cells in IMD myocardial contractile effects was not previously assessed.

Role of cardiac endothelial cells. Cardiac endothelial cells are potential targets for IMD in the heart and therefore likely modulators of its myocardial action. In fact, the role of these cells in the paracrine modulation of myocardial contractility, namely through the release of neurohumoral agents, such as NO and endothelin-1, among others, is well documented (3, 20). Furthermore, previous immunocytochemical studies demonstrate that these cells express the CL/RAMP receptor system responsible for IMD biological action, although IMD expression is restricted to cardiomyocytes in rats and humans (31). Moreover, there is already some evidence in vascular tissue for the role of endothelial derived NO in modulating IMD vasodilator effects (12). Results from the present study suggest the function of cardiac endothelial cells in NO production upon IMD stimulation, since selective removal of EE blunted the inotropic response to IMD. Also, stimulation of primary cardiac endothelial cells culture with the highest concentration of IMD significantly increased NO production not only in endocardial but also in microvascular endothelial cells. Regarding papillary muscles, it should be taken into consideration that this experimental preparation only allows disruption of EE, making impossible to evaluate the role of other endothelial cells, such as those present in the coronary microvasculature. The paracrine function of these cardiac endothelial cells is potentially more relevant, as they are in close contact with a much larger number of cardiomyocytes than the endocardial ones (34). These results could explain the contrasting results observed as to the IMD contractile effects in vivo and in isolated cardiomyocytes, which were until now unclear. Previously, some authors suggested IMD coronary arteries vasodilator action as a possible explanation for IMD inhibitory effect in vivo. However, our results suggest that although cardiac endothelial cells do not express IMD, they are IMD targets and responsible for NO production upon IMD stimulation.

Role of NO and cGMP. Concerning the signaling pathways responsible for endothelial cells myocardial effects, NO release by these cells is a well-known modulator of myocardial inotropic state, mainly inducing a negative inotropic effect due to soluble guanylyl cyclase activation and concomitant cGMP increase (28). With this in mind, the present study assessed the involvement of this pathway by inhibiting NO synthase by L-NAME or guanylyl cyclase by ODQ. Our results showed that inhibition of NO synthase and guanylyl cyclase not only blunted IMD negative inotropic effect but even unmasked a small positive inotropic action. These results are consistent with IMD negative contractile effects being due to NO production and guanylyl cyclase activation. It is now well established that the negative inotropic action mediated by guanylyl cyclase activation results from cGMP-dependent protein kinase (PKG) activation and inhibition of cAMP-phosphodiesterase (PDE III), with concomitant Ca^{2+} myofilament responsiveness reduction by cTnI (19). Interestingly, assessment of P-cTnI levels revealed a significant increase of this form in IMD-treated papillary muscles, which was blunted by NO inhibition. Therefore, it is reasonable to propose NO/cGMP pathway as mainly responsible for IMD negative inotropic action in rat LV papillary muscles, through myofilament desensitization due to increased cTnI phosphorylation.

Regarding the positive inotropic effect of IMD observed in the presence of NO synthase or guanylyl cyclase inhibition,
this comes in accordance with the results in isolated cardiomyocytes and corroborates our initial hypotheses of cardiac endothelial involvement in IMD myocardial effects. These results might therefore explain the differences among studies in the myocardial responses to IMD. More precisely, these results suggest that the IMD negative effect previously observed in vivo (24) is due to endothelial derived NO production, leading to cTnI phosphorylation. On the other hand, the positive inotropic action observed upon NO inhibition is due to IMD direct cardiomyocyte activation of PKA pathway, as previously shown in isolated cardiomyocytes (6). Additionally, in the present study we investigated the receptors involved in IMD positive inotropic action observed upon inhibition of NO synthase. The observation that CGRP receptor inhibition reversed the positive inotropic action of IMD in conditions of NO synthase inhibition also suggests that this receptor is the responsible for this effect. Furthermore, it is interesting to note that when this receptor was inhibited in the presence of NO inhibition, IMD had a negative inotropic action, suggesting that AM receptors activation by IMD in these conditions may activate NO-independent cGMP signaling and concomitant negative inotropic response. Additional evidence supported this hypothesis, as, for example, the fact that guanylyl cyclase inhibition in the presence of NO inhibitors and CGRP receptor antagonists (Fig. 4) blunted the negative inotropic response.

Potential pathophysiological relevance. Similarly to ADM, IMD is considered an endogenous counterregulatory peptide in the heart, opposing the detrimental effects of other neurohormones in cardiac remodeling. There are several evidences of increased IMD expression in the hypertrophic rat heart (7, 13) but more importantly of its antihypertrophic effects in isolated rat cardiomyocytes upon hypertrophic stimuli (2). Furthermore, there is evidence of IMD cardioprotective action in ischemia-reperfusion injury, associated to its negative inotropic action and antioxidant properties (10, 37). Our results, demonstrating for the first time that the myocardial effects of IMD are dependent on NO production, suggest an additional potential role for IMD in the pathophysiology of endothelial dysfunction, which is present in numerous cardiovascular diseases. Moreover, concerning CGRP, a recent work (27) reported distinct contractile effects in normotensive and spontaneous hypertensive rats hearts, due to endothelial nitric synthase downregulation in spontaneous hypertensive rats. This evidence together with our results suggests an important role of NO in CGRP family peptides action.

Conclusions. In conclusion, this is the first study to demonstrate the role of cardiac endothelial cells in the myocardial effects of IMD. We observed an IMD negative inotropic effect in rat papillary muscle, mediated by endothelial NO/cGMP pathway upon AM and CGRP receptors activation that leads to cTnI phosphorylation. Moreover, it is interesting to note the reversal of IMD inotropic response by nitric synthase and guanylyl cyclase inhibition, the first apparently dependent on CGRP but not ADM receptor activation. These results suggest an important role of NO availability in modulation of IMD myocardial action.

ACKNOWLEDGMENTS

We thank Marta Oliveira for technical support.

GRANTS

This work was supported by Portuguese Foundation for Science and Technology Grants PICT/C/82943/2007 and Pest-C/SAU/UI0051/2011 through the Cardiovascular R&D Unit and by European Commission Grant FP7-Health-2010; MEDIA-261409. A. L. Pires had financial support from Fundação para a Ciência e a Tecnologia Grant SFRHB/B/19544/2004.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

