Preferred mitotic orientation in pattern formation by vascular mesenchymal cells

Margaret N. Wong,1 Timothy P. Nguyen,1 Ting-Hsuan Chen,2 Jeffrey J. Hsu,3 Xingjuan Zeng,4 Aman Saw,3 Eric M. Demer,5 Xin Zhao,4 Yin Tintut,3 and Linda L. Demer1,3,6

1Department of Bioengineering, University of California, Los Angeles, California; 2Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California; 3Department of Medicine, University of California, Los Angeles, California; 4Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China; 5College of Creative Studies, University of California-Santa Barbara, Goleta, California; and 6Department of Physiology, University of California, Los Angeles, California

Submitted 20 August 2012; accepted in final form 9 October 2012

Wong MN, Nguyen TP, Chen T, Hsu JJ, Zeng X, Saw A, Demer EM, Zhao X, Tintut Y, Demer LL. Preferred mitotic orientation in pattern formation by vascular mesenchymal cells. Am J Physiol Heart Circ Physiol 303: H1411–H1417, 2012. First published October 12, 2012; doi:10.1152/ajpheart.00625.2012.—Cellular self-organization is essential to physiological tissue and organ development. We previously observed that vascular mesenchymal cells, a multipotent subpopulation of aortic smooth muscle cells, self-organize into macroscopic, periodic patterns in culture. The patterns are produced by cells gathering into raised aggregates in the shape of nodules or ridges. To determine whether these patterns are accounted for by an oriented pattern of cell divisions or postmitotic relocation of cells, we acquired time-lapse, videomicrographic phase-contrast, and fluorescence images during self-organization. Cell division events were analyzed for orientation of daughter cells in mitoses during separation and their angle relative to local cell alignment, and frequency distribution of the mitotic angles was analyzed by both histogrammic and bin-free statistical methods. Results showed a statistically significant preferential orientation of daughter cells along the axis of local cell alignment as early as day 8, just before aggregate formation. This alignment of mitotic axes was also statistically significant at the time of aggregate development (day 11) and after aggregate formation was complete (day 15). Treatment with the nonnucleoside myosin II inhibitor, blebbistatin, attenuated alignment of mitotic orientation, whereas Rho kinase inhibition eliminated local cell alignment, suggesting a role for stress fiber orientation in this self-organization. Inhibition of cell division using mitomycin C reduced the macroscopic pattern formation. Time-lapse monitoring of individual cells expressing green fluorescent protein showed postmitotic movement of cells into neighboring aggregates. These findings suggest that polarization of mitoses and postmitotic migration of cells both contribute to self-organization into periodic, macroscopic patterns in vascular stem cells.

Address for reprint requests and other correspondence: L. L. Demer, UCLA, Box 951679, Los Angeles, CA, 90095-1679 (e-mail: Ldemer@mednet.ucla.edu).

http://www.ajpheart.org 0363-6135/12 Copyright © 2012 the American Physiological Society
Fig. 1. Cell alignment. A: phase-contrast image of vascular mesenchymal cells (VMCs) at ~3 to 4 days in culture, showing swirling into regions of local alignment (near horizontal in top areas, near vertical in bottom, and diagonal at middle, as indicated by dashed lines). B: phase contrast image of VMC mitosis, showing alignment of mitotic axis (solid line determined by connecting the centers of the daughter cells) with the axis of local cell orientation. Both axes tend to orient toward the nearest forming aggregate (asterisk). Image width = 600 μm.

Fig. 2. Alignment of mitoses with one another and with local cell orientation. A: phase-contrast image of VMC culture (day 8) with superimposed schematic defining the mitotic separation angle θ, subtended by the local reference axis (dashed line), the prevailing orientation of local cell alignment, and the mitotic axis (solid line), defined by the line intersecting the center of two daughter cells from a given mitotic event. Scale bar = 100 μm. B: frequency histograms (top) and kernel density estimate distributions (bottom) of mitotic separation angle θ in VMC cultures. Horizontal lines in B, bottom, denote the upper 97.5 and lower 2.5% confidence bounds for the null hypothesis. Vertical axis units are probability/degree, and horizontal axis is mitotic angle measured in degrees. Statistical significance is indicated by the extension of the distribution curve above the upper line in all 3 panels. *P < 0.025.
acquired every 5 min for 24–72 h, and repeated approximately every 3 days through day 15. The resulting images were saved as TIFF files and converted into an AVI file, using Windows Live Movie Maker.

Image analysis. The local reference axis was defined as the mean angle of individual cell long axes in a given region such as the area surrounding a given mitosis. Individual cell axes were determined by automated edge-detection software. After the image contrast was adjusted, the images were made binary and the cells were identified from these aggregates by separately analyzing mitoses that occurred before and after plating and continued for 3 days. Time-lapse imaging in a humidity, CO₂, and temperature-controlled stage was started 11 days after plating and continued for 3 days. Three GFP-labeled cells were examined in this manner.

Statistical analysis. Results of the image analysis were first displayed as frequency histograms for θ in bins of 10° width for the mitoses recorded in each culture. For typical data, histogram-based methods suffer from artifacts because of the arbitrary nature of bin size and location. To eliminate these potential artifacts of binning, we assessed statistical significance of clustering using a bin-free approach, specifically, kernel density estimation (15). In this approach, many small elementary functions centered at the data values are used to build up a continuous estimate of the distribution of the data, which is independent of any bin-size choice. As the kernel functions, we used von Mises distributions, i.e., Gaussian distributions modified for circular or angular data. The width of the kernel functions was chosen to maximize the power of our statistical test against an equal mixture distribution and the cosine distribution. For each data set, we estimated its probability density function and found its maximum and minimum values. These values were then compared with the maxima and minima of 50,000 similar curves constructed with similarly sized samples from the uniform distribution, using Monte Carlo simulation implemented in Python (routines available on request). If a maximum exceeded the 97.5th percentile of the simulated maxima or a minimum was less than the 2.5th percentile of the

Table 1. Frequency table for the angle of mitotic axis

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Bin</th>
<th>Given Angle Range, °</th>
<th>Expected Number of Cells/Angle-Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean, 95% Confidence Interval</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>1–36</td>
<td>4.6 (1.0–8.5)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>37–72</td>
<td>4.6 (1.0–8.7)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>73–108</td>
<td>4.6 (1.0–8.7)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>109–144</td>
<td>4.6 (1.0–8.7)</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>145–180</td>
<td>4.6 (1.0–8.5)</td>
</tr>
<tr>
<td>II</td>
<td>A</td>
<td>1–36</td>
<td>8.4 (3.7–13.7)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>37–72</td>
<td>8.4 (3.8–13.9)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>73–108</td>
<td>8.4 (3.8–13.8)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>109–144</td>
<td>8.4 (3.9–13.8)</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>145–180</td>
<td>8.4 (3.7–13.7)</td>
</tr>
<tr>
<td>III</td>
<td>A</td>
<td>1–36</td>
<td>6.0 (2.0–10.4)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>37–72</td>
<td>6.0 (2.0–10.6)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>73–108</td>
<td>6.0 (2.0–10.6)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>109–144</td>
<td>6.0 (2.0–10.6)</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>145–180</td>
<td>6.0 (2.0–10.4)</td>
</tr>
</tbody>
</table>

*Observed value outside the 95% confidence interval.

Fig. 3. Blebbistatin treatment. Frequency histograms for cells treated with control medium or blebbistatin (10 μM), including mitoses occurring from days 8–15, showing significantly different indexes of dispersion for control vs. treated cultures (nonoverlapping 95% confidence intervals; *P < 0.05).
simulated minima, we considered the deviation, i.e., the degree of clustering, to be statistically significant at the $P < 0.05$ level.

For comparison of treated versus untreated cultures, we used an index of dispersion (ID) (22), which is defined as the variance of bin counts divided by the mean bin count of a histogram. For data with low coherence (clustering), the index is $<<1$. For data with high coherence, the index is $>>1$. For data randomly distributed by a Poisson process, the index is ~ 1. To assess statistical significance of different indexes, we used resampling “bootstrap” analysis to determine confidence intervals. Each data set was randomly resampled 1,000 times, and the indexes of dispersion for the random samples were used to calculate 95% confidence intervals around the observed ID.

RESULTS

Cell alignment. At ~ 3 to 4 days in culture, VMCs showed local cell alignment in regions measuring $\sim 2 \times 2$ cm. This local cell alignment, described using the local reference axis (dashed lines, Fig. 1A) was defined as the mean angle of individual cell axes in a given region, where individual cell axes were determined by automated edge-detection software. At ~ 2 wk after plating, cell divisions appeared to orient such that the line connecting daughter cells (“mitotic axis”; solid line, Fig. 1B) was typically parallel to the local cell alignment (supplemental video 1). Both the mitotic axis and the local reference axis were typically oriented toward the nearest aggregate (asterisk, Fig. 1B).

Alignment of mitotic axes with one another. To determine whether the mitoses within a given field of view were aligned with one another, we determined the angle of the mitotic axis relative to the edge of the field of view for each of 23 to 42 mitoses in time-lapse videomicroscopy. This was repeated in three different cultures from one clone. Results of the image analysis are displayed as a frequency table for the angle of the mitotic axis in bins of 36° width. By comparison with the expected number of cells per angle-interval for the theoretical case of completely random orientation, the observed numbers of cells per angle-interval showed statistically significant clustering for each of the three cultures (*$P < 0.05$; Table 1).

Alignment with local reference axes. To determine whether the mitotic axes aligned with the local reference axes, we determined θ (the angle separating the mitotic axis from the local reference axis; Fig. 2A) for 12–40 mitoses from time-lapse videomicroscopic images from two different cultures from a second clone. If the axes are in alignment, the values of θ should cluster around zero. To determine whether the clustering is statistically significant, we used a bin-free approach, kernel density estimation (15), to avoid artifacts because of choice of bin size and location. Data are displayed as both conventional histograms, using bins of 10° width, and Kernel Density Estimation distributions (Fig. 2B, top and bottom, respectively).

Fig. 4. Angle of daughter-cell migration. Phase-contrast, sequential, time-lapse, videomicrographic images from VMC cultures, showing representative mitotic events (circled) where daughter cells separate in opposite directions along an axis parallel to the mitotic separation angle and nearly parallel to the reference axis of local alignment. Scale bar = 100 μm.

Fig. 5. Time-lapse, fluorescence microscopic images of VMCs expressing green fluorescent protein (GFP) at low efficiency. $A–E$: sequence showing two GFP-positive cells at 2 wk of culture. One GFP-positive cell (bottom right corner) is located within an aggregate that shifts out of the field of view in later images. The other GFP-positive cell migrates toward an aggregate (top left corner), leaving behind a cytoplasmic fragment. Scale bar = 100 μm.
Results showed that the clustering of θ values around zero (indicating alignment of mitotic axes with one another and with the local reference axis) was statistically significant at day 8 ($n = 40$; *$P < 0.025$; Fig. 2B, left). To determine whether the results were consistent over time in culture and whether they were dependent on presence of aggregates, we repeated the analysis on days 11 and 15, during which time aggregate formation occurs. Results showed that the clustering of θ values around zero was also statistically significant during aggregate formation (day 11; $n = 28$; *$P < 0.025$; Fig. 2B, middle) and after aggregate formation (day 15; $n = 12$; *$P < 0.025$; Fig. 2B, right), suggesting that the mitotic axes were aligned with one another and with the local reference axis.

Inhibition of stress fiber orientation. To assess whether the alignment of mitotic axes with each other and with the local reference axis was dependent on stress fiber orientation, we compared the findings with cells treated with the nonmuscle myosin II inhibitor, blebbistatin, or the Rho kinase inhibitor Y-27632 (21). For statistical comparison, we used an ID (22) that is defined as the variance of bin counts divided by the mean bin count of a histogram. For data with low clustering, the index is $<<1$. For data with high clustering, the index is $>>1$. Results showed that the ID was significantly greater in the control, pooled data than in cultures treated with blebbistatin [ID = 12.7; 95% confidence interval (7.6, 20.7) vs. 2.6; 95% confidence interval (1.4, 6.2)] (Fig. 3), suggesting a loss of mitotic alignment with blebbistatin treatment and a role for nonmuscle myosin II in the process. Cultures treated with Y-27632 exhibited no defined local cell alignment (data not shown, since θ is undefined in the absence of local alignment), suggesting a role for Rho kinase in self-organization of the cells in general.
Migration path. Following mitosis, the daughter cells were observed to migrate in opposite directions along the local reference axis (Fig. 4, A–H). Systematic analysis was not performed because the daughter cells quickly spread and lost phase-contrast refractivity as they migrated. To observe migration of individual cells, we transfected a culture of VMCs with a plasmid carrying GFP at low transfection efficiency. By time-lapse fluorescence microscopy, we tracked a GFP-positive cell migrating to the edge of an aggregate, where it appeared to extend and slide into a thin cytoplasmic projection (Fig. 5; supplemental video 2). To determine whether the inhibition of mitosis affects cell migration, cells were continuously treated with the mitosis inhibitor mitomycin C (1 μg/ml).

Since pattern formation occurs over days, a lower concentration of mitomycin C was used to avoid the toxicity seen with chronic treatment at higher concentration. This concentration partially blocked mitosis and partially blocked macroscopic pattern formation, suggesting that cell division contributes in part to the mechanism of self-organization of these cells (Fig. 6).

Altogether, these observations suggest that mitotic orientation is coordinated and aligned with local cell axes, raising the possibility that it contributes to self-organization of VMC into macroscopic patterns.

DISCUSSION

These findings indicate that when VMC divide, mitotic orientation is coherent within local domains (Fig. 7). This alignment correlates with the long axes of cells in that region, and the daughter cells separate along that same axis toward macroscopic aggregates. This aggregate formation is inhibited by blocking mitosis with mitomycin C.

Evidence supports an in vivo role for mitotic orientation in determining the shape of structures and/or organs. For example, mutations affecting orientation of cell division disrupt organ morphogenesis in drosophila, resulting in dysmorphic features, such as loss of wing elongation (1). Similarly, overduplication of centrosomes, which is likely to disrupt mitotic orientation, leads to formation of abnormal vasculature when induced by treatment with vascular endothelial growth factor (18). Our findings suggest that alignment of mitotic orientation underlies cellular self-organization by orienting daughter cells to migrate in a particular direction in a coordinated manner and that it contributes to the formation of periodic patterns of multicellular aggregates by organizing cell migration. This raises the possibility that local disruption of mitotic alignment may mitigate pathological forms of cellular aggregation, such as nodules in calcific aortic valve stenosis.

In our studies, the alignment of mitotic orientation persisted, though somewhat diminished, with inhibition of nonmuscle myosin-II kinase, suggesting a small role of for this factor. The diminished pattern formation with mitomycin C-induced mitotic arrest suggests a role of cell division in self-organization, although we cannot exclude the possibility that cell density confounded this result. The finding that alignment remains consistent before, during, and after aggregate formation suggests that contraction of mature aggregates is not required. However, it remains possible that synchronized contraction and extracellular matrix wrinkling occur before distinct aggregates are visible.

A number of mechanisms may explain oriented cell division. Pattern formation in VMCs and other cells appears to be governed by reaction-diffusion phenomena that provide chemical gradients in prepatterns in embryonic tissue formation (4, 7, 9, 16). Chemical gradients also drive cell alignment as in Drosophila (11). Mechanical factors, such as the cell traction phenomenon (12), substrate interfaces (5), and cell chirality (13), may also contribute. In the cell traction phenomenon, extracellular matrix is deformed by the traction forces of motile cells, and this anisotropic “wrinkling” guides cell movements in a preferred direction, as wheels in “ruts.” Overall, these findings suggest that nonrandom orientation of mitoses, alignment of mitotic orientation with local cell alignment, and postmitotic migration may all contribute to the formation of macroscopic periodic patterns in vascular cells.

Overall, these findings are relevant to disease in that this culture model may be used to study atherosclerotic plaque, such as determinants of mechanical vulnerability. They also may provide an in vitro model for developmental embryogenesis, allowing study of the mechanisms driving cellular self-organization required for embryogenesis. In addition, the findings are relevant to tissue regeneration engineering, because they add to our fundamental understanding of cellular self-organization and provide a potential approach for coaxing cells into macrostructures that recapitulate the architecture of normal tissues.

ACKNOWLEDGMENTS

We are grateful to Dr. Chih-Ming Ho for the use of imaging facilities.

GRANTS

This research was supported in part by National Heart, Lung, and Blood Institute Grant HL-081202 (to L. L. Demer and Y. Tintut), National Science Foundation Grant EFRI-1025073 (to L. L. Demer), and the Laubisch Endowment at University of California, Los Angeles.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

5. Chen TH, Hsu JJ, Zhao X, Guo C, Wong MN, Huang Y, Li Z, Garfinkel A, Ho CM, Tintut Y, Demer LL. Left-right symmetry break-

