Effect of hyperpolarization-activated current I_f on robustness of sinoatrial node pacemaking: theoretical study on influence of intracellular Na$^+$ concentration

Yasutaka Kurata, Ichiro Hisatome, Mamoru Tanida, and Toshishige Shibamoto

1Department of Physiology, Kanazawa Medical University, Ishikawa, Japan; and 2Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Japan

Submitted 18 October 2012; accepted in final form 14 March 2013

Kurata Y, Hisatome I, Tanida M, Shibamoto T. Effect of hyperpolarization-activated current I_f on robustness of sinoatrial node pacemaking: theoretical study on influence of intracellular Na$^+$ concentration. Am J Physiol Heart Circ Physiol 304: H1337–H1351, 2013. First published March 15, 2013; doi:10.1152/ajpheart.00777.2012.—To elucidate the effects of hyperpolarization-activated current I_f on robustness of sinoatrial node (SAN) pacemaking in connection with intracellular Na$^+$ concentration (N_{Na}) changes, we theoretically investigated the impact of I_f on dynamical properties of SAN model cells during inhibition of L-type Ca$^{2+}$ channel currents (I_{CaL}) or hyperpolarizing loads and I_f-dependent changes in N_{Na} and their effects on dynamical properties of model cells. Bifurcation analyses were performed for N_{Na}-variable and N_{Na}-fixed versions of mathematical models for rabbit SAN cells; equilibrium points (EPs), limit cycles (LCs), and their stability were determined as functions of model parameters. Increasing I_f conductance (g_f) shrunk I_{CaL} conductance (g_{CaL}) regions of unstable EPs and stable LCs (rhythmic firings) in the N_{Na}-variable system but slightly broadened that of rhythmic firings at lower g_f in the N_{Na}-fixed system. In the N_{Na}-variable system, increased g_f yielded elevations in N_{Na} at EPs and during spontaneous oscillations, which caused EP stabilization and shrinkage in the parameter regions of unstable EPs and rhythmical firings. As g_f increased, parameter regions of unstable EPs and stable LCs determined for hyperpolarizing loads shrank in the N_{Na}-variable system but were enlarged in the N_{Na}-fixed system. These findings suggest that 1) I_f does not enhance but rather attenuates robustness of rabbit SAN cells via facilitating EP stabilization and LC destabilization even in physiological g_f ranges; and 2) the enhancing effect of I_f on robustness of pacemaker activity, which could be observed at lower g_f when N_{Na} was fixed, is actually reversed by I_f-dependent changes in N_{Na}.

Nonlinear dynamics; bifurcation analysis; mathematical model; computer simulation; hyperpolarizing load

THE HYPERPOLARIZATION-ACTIVATED cation current (I_f), encoded by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel gene, is well known to play a central role in pacemaker depolarization as a pacemaker current in sinoatrial node (SAN) cells (2, 7, 28) and is a key current for engineering of biological pacemakers (44, 45). I_f contributes to prevention of excess hyperpolarization and excessively slow pacemaking against hyperpolarizing loads (15, 28, 34), autonomic regulations of spontaneous activity (5), stabilization of pacemaker frequency (15, 33, 39), and generation of diastolic depolarization in the periphery of intact SAN suffering electrotonic influences of the atrium (38). These experimental reports suggest enhancement of the robustness of SAN cell pacemaking against hyperpolarizing loads, as well as initiation of pacemaker depolarization, by I_f. Maltsev and Lakatta (33) have also concluded, using their novel SAN cell model for rabbit central SAN cells, that I_f enhances robustness of central SAN cell pacemaking against attenuation of the L-type Ca$^{2+}$ channel current (I_{CaL}) or sarcoplasmic reticulum (SR) Ca$^{2+}$ cycling, because larger I_f broadened the area of spontaneous rhythmic firings on the parametric plane of the maximum I_{CaL} conductance (g_{CaL}) and SR Ca$^{2+}$ pumping rate (P_{Na}). Thus I_f may enhance SAN cell robustness against intrinsic and extrinsic disturbances including hyperpolarizing loads and attenuation of the membrane and SR Ca$^{2+}$ clocks.

In our previous theoretical study using our mathematical models for rabbit SAN cells (25), however, larger I_f did not necessarily enhance but rather attenuated the robustness of central SAN cell pacemaking against hyperpolarizing loads via parasympathetic stimulation while enhancing the robustness of peripheral SAN cell pacemaking against electrotonic loads of the atrium in combination with the Na$^+$ channel current (I_{Na}): in the central SAN cell model, the parameter regions of unstable stationary states and rhythmic firings shrunk at higher maximum I_f conductance (g_f) in physiological g_f ranges. Thus whether I_f enhances robustness of central SAN cell pacemaking is still controversial.

What are the reasons for this inconsistency? One of possible reasons is that the effect of I_f is model dependent, and another is the influence of intracellular Na$^+$ concentration (N_{Na}) changes: the Maltsev-Lakatta model (33) is based on the Kurata et al. model (20) and thus possesses essentially the same I_f formula as the Kurata et al. model. However, N_{Na} was fixed at a constant value of 10 mM (handled as a constant parameter) in the Maltsev-Lakatta model (33), whereas it was handled as a state variable in our model (25). Because N_{Na} has been shown to increase during enhancement of I_f and significantly affect pacemaker activity (4), this discrepancy may be at least in part due to the concomitant change in N_{Na} during enhancement of I_f; N_{Na} is likely to vary during changes in g_f or other bifurcation parameters and thereby influence dynamical properties of SAN cells.

The aim of this study was to reevaluate the roles of I_f in SAN pacemaking, with particular attention to I_f-dependent changes in N_{Na} that may affect its impacts on robustness of SAN cells. In our previous studies (20–26), bifurcation structures (i.e., changes in the number or stability of equilibrium and periodic states) of SAN and ventricular cell model systems were investigated for elucidating the dynamical mechanisms of normal and abnormal pacemaker activities, which is called “bifurcation analysis.” These theoretical works indicate that the initiation and cessation of pacemaker activity are consid-
nered as bifurcation phenomena and that the mathematical approach (bifurcation analysis) provides a convenient way of understanding how individual currents contribute to pacemaker activities (see also Ref. 15). Therefore, we again applied bifurcation analysis to the mathematical models for rabbit SAN cells. Bifurcation diagrams were constructed by calculating equilibrium points (EPs) as stationary states, periodic orbits called limit cycles (LCs), their stability, and bifurcation points as functions of model parameters such as \(g_f \). We particularly focused on the effects of \(I_f \) on the stability of stationary state membrane potentials (\(V_m \)) and robustness of pacemaker activity against inhibition of \(I_{CaL} \) or hyperpolarizing loads. The robustness against hyperpolarizing loads was evaluated by determinations of stability and oscillation dynamics of the model cells during injections of hyperpolarizing bias currents (\(I_{bias} \)), enhancement of the background \(K^+ \) conductance (\(g_{sk} \)), and applications of acetylcholine (ACh). The \(I_f \) effects were tested for both the \(Na_i \)-fixed system, including \(Na_i \) as a parameter, and the \(Na_i \)-variable system (like a real cell), in which \(Na_i \) is a state variable and thus varies during parameter changes. We further determined \(Na_i \)-dependent bifurcation structures of the \(Na_i \)-fixed system. These theoretical analyses provide significant insights into the contribution of \(I_f \) to robustness of SAN cell pacemaking as well as how \(Na_i \) influences \(I_f \) effects and other bifurcation properties of SAN cells. This study, suggesting that excess \(I_f \) attenuates robustness of pacemaker activity, would be particularly important as a theoretical background for genetic engineering of \(I_f \)-based biological pacemakers with ability of robust pacemaking and driving for gene or cell therapy of bradyarrhythmias (for review, see Refs. 14, 35, 44).

THEORY AND METHODS

Mathematical Formulation (Base Models for SAN Cells)

As base pacemaker cell models of the rabbit SAN, we used the Maltsev-Lakatta model (33) as well as other previously developed single-cell models (6, 10, 20, 24, 53) for central or transitional SAN cells. Results and conclusions obtained from these models were essentially the same (model independent); in this article, therefore, the results from the Maltsev-Lakatta model are mainly shown (unless otherwise stated) along with limited comparisons with other previous models. A complete list of the equations and standard parameter values for their models, as well as their dynamics, has been provided in the original articles and is also given on the CellML website (http://www.cellml.org). These models are implemented in a CellML-based open resource for public access (http://www.opencor.ws/).

The base Maltsev-Lakatta model for normal pacemaker activity includes 13 membrane current components. The membrane current system includes \(I_{CaL} \), T-type Ca\(^{2+} \) channel current (\(I_{CaT} \)), \(I_f \) sustained inward current (\(I_s \)), rapidly activating (\(I_{Kr} \)) and slowly activating (\(I_{Ks} \)) components of delayed-rectifier \(K^+ \) channel currents, 4-aminopyridine (4-AP)-sensitive currents consisting of transient (\(I_{NaT} \)) and sustained (\(I_{bias} \)) components, background currents carried by \(Na^+ \) (\(I_{NaB} \)) and Ca\(^{2+} \) (\(I_{CaB} \)), muscarinic \(K^+ \) channel current (\(I_{KACH} \)), \(Na^+ \)-\(K^+ \) pump current (\(I_{NaK} \)), and \(Na^+ \)/Ca\(^{2+} \) -exchanger current (\(I_{NCX} \)). All the currents charge the membrane capacitance (\(C_m \)). The time-dependent change in the membrane potential \(V_m \) is then described by

\[
\frac{dV_m}{dt} = \left(I_{CaL} + I_{CaT} + I_f + I_{Na} + I_{Kr} + I_{Ks} + I_{iso} + I_{bias} + I_{NaB} \right) - I_{CaB} - I_{KACH} - I_{NaK} - I_{NCX} / C_m.
\]

Bifurcation Analysis

The Maltsev-Lakatta model is a 29-order autonomous continuous-time dynamical system, which is described as a set of 29 first-order, nonlinear ordinary differential equations. Dynamical properties and bifurcation structures of the model cell system were therefore described analytically and numerically handling the differential equations. For bifurcation analyses, the intracellular \(K^+ \)-concentration (\(K_i \)) was fixed at 140 mM to remove degeneracy (for details, see Refs. 19 and 22). \(Na_i \) in the model cell was fixed at 10 mM as in Maltsev and Lakatta (33) or not fixed as in Kurata et al. (20, 25); i.e., bifurcation structures were determined for both the \(Na_i \)-fixed and \(Na_i \)-variable systems for comparisons. Simulated behaviors of \(V_m \), ionic currents, and intracellular Ca\(^{2+} \) concentrations during normal pacemaking of the \(Na_i \)-variable model cell were very similar (nearly identical) to those of the \(Na_i \)-fixed model cell, as well as to those shown in the original article (33), with the mean \(Na_i \) during normal pacemaking being 9.93 mM. Numerical computations were performed with MATLAB 7.5 (The MathWorks, Natick, MA) on Workstation HP xw9400 and Z800 (Hewlett-Packard, Tokyo, Japan).

Theory and methods for bifurcation analyses are essentially the same as described previously (24). Bifurcation parameters chosen in this study include \(I_f \) the maximum ion channel conductances (\(g_{CaL} \) and \(g_f \)), \(Na_i \), 3) amplitude of hyperpolarizing \(I_{bias} \), 4) \(g_{sk} \) and 5) ACh concentration (\([ACh] \)). The maximum conductance \(g_{CaL} \) is given in picomoles per milliliter (pSiMPF) unless otherwise stated, whereas \(g_f \) is expressed as a normalized value, i.e., ratio to the control value. Detailed procedures for 1) locating EPs and LCS, 2) constructing one- and two-parameter bifurcation diagrams, and 3) detecting bifurcations (determination of EP and LC stabilities) are provided in our previous article (24). Definitions of the specific terms for the nonlinear dynamics and bifurcation theory are also given in our previous article (24) as well as in textbooks (e.g., 27, 40, 46).

The critical parameter value at which a bifurcation occurs (bifurcation point) was determined by evaluating the existence and asymptotic stability of EPs and LCS at each value of a relevant parameter. The Hopf bifurcation point at which the stability of an EP reverses was located by stability analysis (46, 51). Period-doubling and Neimark-Sacker bifurcation points where an LC becomes unstable with emergence of arrhythmic dynamics were also detected (for details, see Refs. 12, 15, and 25).

To assess the robustness of pacemaker activity against hyperpolarizing loads, we determined the critical values of hyperpolarizing \(I_{bias} \), \(g_{sk} \), or [ACh] at which a bifurcation to quiescence or arrhythmic dynamics occurs. Here, the mathematical term “robustness” for a pacemaker system is defined as its ability to keep rhythmic firings against changes in key parameters, i.e., perturbations (interventions) that may cause bifurcations to cessation of pacemaker activity or arrhythmic dynamics. Hopf bifurcations to yield stable EPs and quiescence, as well as period-doubling or Neimark-Sacker bifurcations of LCS to destabilize LCS with spawning of arrhythmic oscillations, were detected; if the change of a bifurcation parameter required for yielding a bifurcation is greater in system A than in system B, one can say that system A is more robust than system B against the relevant perturbation (for more details, see Ref. 21).

RESULTS

Impacts of \(I_f \) on \(g_{CaL} \)-Dependent Bifurcation Structures of SAN Model Cells

We first examined the influences of changing \(g_f \) on robustness of SAN cell pacemaking by exploring bifurcation structures of the \(Na_i \)-variable and \(Na_i \)-fixed model cell systems during inhibition of \(I_{CaL} \) as done in Maltsev and Lakatta (33).

Enhancing \(I_f \) shrank \(g_{CaL} \)

regions of unstable EPs and stable LCS in the \(Na_i \)-variable system. Figure 1 shows one-parameter bifurcation diagrams for \(g_{CaL} \), where stationary-state \(V_m \) at EPs, \(V_m \) extrema of LC oscillations (spontaneous firings), and bifurcation points were plotted as functions of \(g_{CaL} \) for the
as unstable EPs significantly shrank with increasing g_f values ranging over 8–12 mM), increasing g_f slightly enlarged g_{Ca} region of stable LCs (rhythmic firings) as well as unstable EPs and LCs (arrhythmic firings). As illustrated in Fig. 2A, spontaneous firings in the Na_i-variable system with larger g_f, as well as those in the Na_i-fixed system with smaller g_f, were abolished at higher g_{Ca}. Thus the I_f effects on stability and bifurcations of LCs were opposite in the Na_i-variable and Na_i-fixed systems. The g_{Ca} regions of stable EPs became broader with increasing g_f in both the Na_i-variable and Na_i-fixed systems: the systems with larger g_f did not generate spontaneous oscillations but were quiescent (at a stable EP) at higher g_{Ca} (Fig. 2B).

For more clearly demonstrating the effect of I_f, particularly that of its overexpression as achieved in engineering of I_f-based biological pacemakers (41), the g_{Ca}-dependent bifurcation structures of the model systems were further tested over broader ranges of g_f, as summarized by two-parameter bifurcation diagrams for g_{Ca}, and g_f where the loci of bifurcations of EPs and LCs are plotted on the g_f-g_{Ca} parametric plane (Fig. 3). The parametric planes were divided into three different areas: 1) unstable EP and rhythmic oscillation (UR), 2) stable EP and quiescence (SQ), and 3) unstable EP and arrhythmic oscillation (UA) in the Na_i-variable system or coexistence of stable EP and rhythmic oscillation (SR), i.e., bistable zone (BS), in the Na_i-fixed system. In the bistable zone of the Na_i-fixed system (e.g., $g_{Ca} = 279–340$ pS/pF at $g_f = 1$ as shown in Fig. 2), the transitions between two states (a stable resting state and a rhythmic firing state) called annihilation and single-pulse triggering occur (for more details, see Refs. 15 and

g_{Ca}-variable and Na_i-fixed model cells with different g_f (0, 1, or 2 times the control value of 150 pS/pF). In the Na_i-variable system, the g_{Ca} region of stable LCs (rhythmic firings) as well as unstable EPs significantly shrank with increasing g_f. In contrast, in the system with Na_i fixed at 10 mM (or various values ranging over 8–12 mM), increasing g_f slightly enlarged the g_{Ca} region of spontaneous firings, as shown by Maltsev and Lakatta (33), whereas it slightly shrank the region of unstable EPs. As illustrated in Fig. 2A, spontaneous firings in the Na_i-variable system with larger g_f, as well as those in the Na_i-fixed system with smaller g_f, were abolished at higher g_{Ca}. Thus the I_f effects on stability and bifurcations of LCs were opposite in the Na_i-variable and Na_i-fixed systems. The g_{Ca} regions of stable EPs became broader with increasing g_f in both the Na_i-variable and Na_i-fixed systems: the systems with larger g_f did not generate spontaneous oscillations but were quiescent (at a stable EP) at higher g_{Ca} (Fig. 2B).

For more clearly demonstrating the effect of I_f, particularly that of its overexpression as achieved in engineering of I_f-based biological pacemakers (41), the g_{Ca}-dependent bifurcation structures of the model systems were further tested over broader ranges of g_f, as summarized by two-parameter bifurcation diagrams for g_{Ca} and g_f where the loci of bifurcations of EPs and LCs are plotted on the g_f-g_{Ca} parametric plane (Fig. 3). The parametric planes were divided into three different areas: 1) unstable EP and rhythmic oscillation (UR), 2) stable EP and quiescence (SQ), and 3) unstable EP and arrhythmic oscillation (UA) in the Na_i-variable system or coexistence of stable EP and rhythmic oscillation (SR), i.e., bistable zone (BS), in the Na_i-fixed system. In the bistable zone of the Na_i-fixed system (e.g., $g_{Ca} = 279–340$ pS/pF at $g_f = 1$ as shown in Fig. 2), the transitions between two states (a stable resting state and a rhythmic firing state) called annihilation and single-pulse triggering occur (for more details, see Refs. 15 and

g_{Ca}-variable and Na_i-fixed model cells with different g_f (0, 1, or 2 times the control value of 150 pS/pF). In the Na_i-variable system, the g_{Ca} region of stable LCs (rhythmic firings) as well as unstable EPs significantly shrank with increasing g_f. In contrast, in the system with Na_i fixed at 10 mM (or various values ranging over 8–12 mM), increasing g_f slightly enlarged the g_{Ca} region of spontaneous firings, as shown by Maltsev and Lakatta (33), whereas it slightly shrank the region of unstable EPs. As illustrated in Fig. 2A, spontaneous firings in the Na_i-variable system with larger g_f, as well as those in the Na_i-fixed system with smaller g_f, were abolished at higher g_{Ca}. Thus the I_f effects on stability and bifurcations of LCs were opposite in the Na_i-variable and Na_i-fixed systems. The g_{Ca} regions of stable EPs became broader with increasing g_f in both the Na_i-variable and Na_i-fixed systems: the systems with larger g_f did not generate spontaneous oscillations but were quiescent (at a stable EP) at higher g_{Ca} (Fig. 2B).

For more clearly demonstrating the effect of I_f, particularly that of its overexpression as achieved in engineering of I_f-based biological pacemakers (41), the g_{Ca}-dependent bifurcation structures of the model systems were further tested over broader ranges of g_f, as summarized by two-parameter bifurcation diagrams for g_{Ca} and g_f where the loci of bifurcations of EPs and LCs are plotted on the g_f-g_{Ca} parametric plane (Fig. 3). The parametric planes were divided into three different areas: 1) unstable EP and rhythmic oscillation (UR), 2) stable EP and quiescence (SQ), and 3) unstable EP and arrhythmic oscillation (UA) in the Na_i-variable system or coexistence of stable EP and rhythmic oscillation (SR), i.e., bistable zone (BS), in the Na_i-fixed system. In the bistable zone of the Na_i-fixed system (e.g., $g_{Ca} = 279–340$ pS/pF at $g_f = 1$ as shown in Fig. 2), the transitions between two states (a stable resting state and a rhythmic firing state) called annihilation and single-pulse triggering occur (for more details, see Refs. 15 and

g_{Ca}-variable and Na_i-fixed model cells with different g_f (0, 1, or 2 times the control value of 150 pS/pF). In the Na_i-variable system, the g_{Ca} region of stable LCs (rhythmic firings) as well as unstable EPs significantly shrank with increasing g_f. In contrast, in the system with Na_i fixed at 10 mM (or various values ranging over 8–12 mM), increasing g_f slightly enlarged the g_{Ca} region of spontaneous firings, as shown by Maltsev and Lakatta (33), whereas it slightly shrank the region of unstable EPs. As illustrated in Fig. 2A, spontaneous firings in the Na_i-variable system with larger g_f, as well as those in the Na_i-fixed system with smaller g_f, were abolished at higher g_{Ca}. Thus the I_f effects on stability and bifurcations of LCs were opposite in the Na_i-variable and Na_i-fixed systems. The g_{Ca} regions of stable EPs became broader with increasing g_f in both the Na_i-variable and Na_i-fixed systems: the systems with larger g_f did not generate spontaneous oscillations but were quiescent (at a stable EP) at higher g_{Ca} (Fig. 2B).

For more clearly demonstrating the effect of I_f, particularly that of its overexpression as achieved in engineering of I_f-based biological pacemakers (41), the g_{Ca}-dependent bifurcation structures of the model systems were further tested over broader ranges of g_f, as summarized by two-parameter bifurcation diagrams for g_{Ca} and g_f where the loci of bifurcations of EPs and LCs are plotted on the g_f-g_{Ca} parametric plane (Fig. 3). The parametric planes were divided into three different areas: 1) unstable EP and rhythmic oscillation (UR), 2) stable EP and quiescence (SQ), and 3) unstable EP and arrhythmic oscillation (UA) in the Na_i-variable system or coexistence of stable EP and rhythmic oscillation (SR), i.e., bistable zone (BS), in the Na_i-fixed system. In the bistable zone of the Na_i-fixed system (e.g., $g_{Ca} = 279–340$ pS/pF at $g_f = 1$ as shown in Fig. 2), the transitions between two states (a stable resting state and a rhythmic firing state) called annihilation and single-pulse triggering occur (for more details, see Refs. 15 and
EFFECT OF I_F ON SAN CELL ROBUSTNESS

A

Na-variable

$g_f=0$

V_m (mV)

Time (s)

200 180 160

$g_f=1$

V_m (mV)

Time (s)

281 279 277

$g_f=2$

V_m (mV)

Time (s)

B

Na-variable

$g_f=0$

V_m (mV)

Time (s)

140 160 180 200

$g_f=1$

V_m (mV)

Time (s)

335 340 345 350

$g_f=2$

V_m (mV)

Time (s)

335 340 345 350

H1340

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00777.2012 • www.ajpheart.org

Downloaded from http://ajpheart.physiology.org/ by 10.220.33.3 on July 6, 2017
It should be noted that the I_f effects on g_{CaL}-dependent bifurcation structures were remarkably different in the Na_i-variable and Na_i-fixed systems, and that the g_{CaL} regions of unstable EPs and stable LCs (rhythmic firings) were not broadened but shrank at higher g_t, particularly in the Na_i-variable system. In the Na_i-variable system, increasing g_t did not broaden but monotonically shrank the g_{CaL} regions of unstable EPs and rhythmic firings and also broadened the region of arrhythmic dynamics by shifting LC bifurcations toward larger g_{CaL}, as shown in Figs. 1A (right) and 3A. In agreement with the report of Maltsev and Lakatta (33), the Na_i-fixed system certainly exhibited slight enlargement of the g_{CaL} region of rhythmic firings with increasing g_t (up to 3-fold increase). Nevertheless, g_t increases of more than threefold led to the shrinkage in the g_{CaL} region of rhythmic firings in the Na_i-fixed system, as well.

Enhanced I_f facilitated EP stabilization via its voltage-dependent kinetics. The shrinkage in the parameter region of unstable EPs at higher g_t is at least in part ascribed to the stabilization of stationary-state V_m at an EP via voltage-dependent I_f kinetics. As exemplified in Fig. 4 for the Na_i-variable system, small depolarization from the stationary-state V_m caused instantaneous reduction of inward I_f, which is greater at higher g_t. Resultant outward shift of the total sarcotendinous membrane current (I_{total}) prevents further depolarization and facilitates depolarization to the stationary-state V_m. The greater g_t-dependent shrinkage of the unstable EP regions in the Na_i-variable system is related to the I_f-induced increase in the stationary-state Na_i at EPs (Fig. 4, bottom left), as discussed later.

Enhancing I_f caused increases in Na_i at EPs and during LC oscillations. Why do the I_f effects on the parameter-dependent bifurcation structure differ in the Na_i-variable and Na_i-fixed systems? Because Na_i has been demonstrated to increase as I_f is enhanced (4), the inconsistency may be at least in part due to the concomitant increase in Na_i during enhancement of I_f. Thus we further examined the g_t-dependent changes in Na_i at EPs and during spontaneous oscillations in the Na_i-variable system. Figure 5 shows a contour plot on the g_t-g_{CaL} Parametric plane of stationary-state values of Na_i at EPs (A) and one-parameter bifurcation diagrams in which Na_i, as well as V_m, I_f, and I_{NaK}, at stationary states (EPs) and its extrema during spontaneous firings are plotted as functions of g_t (B). The values of Na_i became higher with increasing g_t. As illustrated in Fig. 6 in connection with Fig. 1A, the Na_i-variable system with larger g_t exhibited higher Na_i both at EPs and during spontaneous firings at a given g_{CaL} along with the bifurcations at larger g_{CaL}. The Na_i reached during stable rhythmic oscillations were much higher than those in stationary states at EPs (Figs. SB and 6).

Influences of Na_i on Bifurcation Structure of SAN Model Cells

Figures 5 and 6 strongly suggest that g_t-dependent changes in Na_i at least in part account for the difference in the I_f effect on the parameter-dependent bifurcation structures of the Na_i-variable and Na_i-fixed systems. Because I_{NaK}, as well as I_{NaC} and other Na$^+$ fluxes, depends on Na_i, stability and bifurcations of SAN cells during parameter changes may be affected by concomitant variations in Na_i. We therefore investigated...
how the parameter N_{ai} affects stability and bifurcations of EPs and LCs in the N_{ai}-fixed system.

Increasing N_{ai} shrank parameter regions of unstable EPs and stable LCs. Figure 7A shows a two-parameter bifurcation diagram for N_{ai} and g_{Cal}. Where the loci of bifurcations of EPs and LCs are plotted on the N_{ai}-g_{Cal} parametric plane for the N_{ai}-fixed system, incorporating N_{ai} as a parameter. The parametric plane was divided into three different areas as in Fig. 3A: 1) unstable EP and rhythmic oscillation (UR), 2) stable EP and quiescence (SQ), and 3) coexistence of stable EP and rhythmic oscillation (SR). The g_{Cal} regions of unstable EPs (UR) and rhythmic oscillations (UR + SR) dramatically shrank with increasing N_{ai}.

Increased N_{ai} yielded EP stabilization and quiescence by affecting ionic currents. As shown in Fig. 7B, increased N_{ai} enhanced outward I_{NK} and diminished inward I_{SCX} (Ca2+ influx via the Na+Ca2+ exchanger) at EPs as well as during spontaneous firings, which resulted in hyperpolarization of V_m and increase in total intracellular Ca2+ content ($C_{a_{total}}$) [and subspace Ca2+ concentration ($C_{a_{sub}}$), as well] at EPs. With increasing N_{ai}, stationary-state I_{Cal} was reduced via voltage-dependent deactivation at hyperpolarized V_m and Ca-dependent inactivation at higher $C_{a_{sub}}$; thus the combined reductions in both I_{Cal} and inward I_{SCX} at higher N_{ai} resulted in smaller activation of the inward currents (i.e., outward shift of I_{total}) on depolarization from stationary-state V_m leading to EP stabilization (Fig. 8).

Impacts of I_f on Robustness of SAN Model Cells Against Hyperpolarizing Loads

I_f is usually expected to enhance the robustness of SAN pacemaking against hyperpolarizing loads by supplying inward currents and thereby preventing excess hyperpolarization of SAN cells. However, as for the g_{Cal}-dependent bifurcations, the influences of I_f on bifurcation structures of the model cells suffering hyperpolarizing loads may be different in the N_{ai}-variable and N_{ai}-fixed systems: i.e., even if I_f enhances SAN cell robustness in the N_{ai}-fixed system at lower g_f as reported previously (33), f-dependent changes in N_{ai} may eliminate and reverse the enhancing effect of I_f in the N_{ai}-variable system like a real cell. To determine whether I_f enhances robustness against hyperpolarizing loads of SAN cell pacemaking, therefore, we further examined the influences of modifying I_f on stability of EPs (stationary states) and LCs (spontaneous firings), as well as their bifurcations, in the N_{ai}-variable and N_{ai}-fixed model cells during injections of hyperpolarizing I_{bias}, increments of g_{bk}, and applications of ACh. Essentially the same results were obtained for all these hyperpolarizing loads.

Enhancing I_f shrank I_{bias} regions of unstable EPs and stable LCs in the N_{ai}-variable system. Figure 9 shows one-parameter bifurcation diagrams in which stationary-state V_m at EPs, V_m extrema of spontaneous firings, and bifurcation points are plotted as functions of the amplitude of hyperpolarizing I_{bias} for the N_{ai}-variable and N_{ai}-fixed systems. In the N_{ai}-variable system, the I_{bias} regions of unstable EPs and stable LCs (rhythmic firings) shrank with increasing g_f; spontaneous firings became unstable and arrhythmic (chaotic) via a bifurcation (destabilization) of LCs and vanished via a bifurcation (stabilization) of EPs. In contrast, the unstable EP and stable LC regions of the N_{ai}-fixed system were enlarged by I_f at the relatively small g_f.

Bifurcation structures during hyperpolarizing loads of the model systems were further tested for broader ranges of g_f, as illustrated by two-parameter bifurcation diagrams for hyperpolarizing I_{bias} and g_f where the loci of bifurcations of EPs and
LCs are plotted on the g_t-I_{bias} parametric plane (Fig. 10). The parametric planes were divided into three different areas as in Fig. 3: 1) unstable EP and rhythmic firing (UR), 2) stable EP and quiescence (SQ), and 3) unstable EP and arrhythmic firing (UA) in the Na_i-variable system or coexistence of stable EP and rhythmic firing (SR), i.e., bistable zone (BS), in the Na_i-fixed system. The I_{bias} regions of unstable EPs and stable LCs (rhythmic firings) as well as unstable LCs (arrhythmic firings) in the Na_i-variable system dramatically shrank with increasing g_t (Fig. 10A). In contrast, in the Na_i-fixed system, the I_{bias} region of unstable EPs was first enlarged by I_f at relatively small g_t and then shrank by greater increases in g_t, whereas that of stable LCs (rhythmic firings) was broadened with increasing g_t (Fig. 10B). The critical I_{bias} values to yield bifurcations to quiescence at lower g_t (control value or less) were larger, but those at higher g_t were smaller, in the Na_i-variable system than in the Na_i-fixed system.

Augmented I_f caused dramatic increase in Na_i during enhancement of hyperpolarizing loads. As shown in Fig. 11 in connection with Fig. 9A, the Na_i-variable system with larger g_t exhibited higher Na_i, as well as higher amplitudes of I_f, at EPs and during spontaneous firings, along with the bifurcations at smaller hyperpolarizing I_{bias}, during increases in amplitudes of I_{bias}, I_f and Na_i increased more dramatically at higher g_t. In the Na_i-fixed system, increasing the parameter Na_i shrank the I_{bias} regions of unstable EPs and stable LCs (rhythmic firings) as for the g_{CaL} regions (data not shown); as in the g_{CaL}-dependent bifurcation, the increased Na_i facilitated bifurcations during I_{bias} applications and thus significantly shrank the I_{bias} regions of unstable EPs and rhythmic firings at larger g_t.

Comparisons Among Previously Developed SAN Cell Models

To determine whether the I_f effects on SAN cell robustness are model dependent or not, we tested and compared I_f-dependent bifurcation structures during I_{CaL} inhibitions or hyperpolarizing loads (g_{Kf}) of previously developed single SAN cell models, including Wilders et al. (53), Demir et al. (6), and Dokos et al. (10) models for transitional SAN cells, as well as Kurata et al. (20, 24) models for central SAN cells. Figure 12 shows two-parameter bifurcation diagrams where bifurcations of EPs are located on the g_{CaL}-g_{Kf} parametric planes for the Na_i-variable and Na_i-fixed versions of each SAN cell model. The g_{CaL} regions of unstable EPs shrank with increasing g_t in all of the Na_i-variable systems, whereas those in the Na_i-fixed systems shrunk or en-
larged depending on the models. As for \(g_{\text{K}} \)-dependent bifurcations, enhancing \(I_i \) slightly enlarged the \(g_{\text{K}} \) region of unstable EPs at \(g_f \) lower than the control value in the Wilders et al. and Dokos et al. models but shrunk it at \(g_f \) higher than the control value in all the \(N_{\text{Na}} \)-variable systems. The \(g_f \)-dependent changes in bifurcation points were very small in the Demir et al. model, which has a much more negative threshold potential of \(I_i \) activation than other models; positive shifts in the thresh-

\[
\begin{align*}
\text{A} & \quad g_f = 0 \\
\text{B} & \quad g_f = 1 \\
\text{C} & \quad g_f = 2
\end{align*}
\]

\[
\begin{align*}
\text{A} & \quad g_{\text{CaL}} = 464 \text{ (pS/pF)}; g_f = 150 \text{ (pS/pF)} \\
\text{B} & \quad g_{\text{CaL}} = 464 \text{ (pS/pF)}; g_f = 150 \text{ (pS/pF)}
\end{align*}
\]

\[
\begin{align*}
\text{A} & \quad g_{\text{Na}i} = 150 \text{ (pS/pF)} \\
\text{B} & \quad g_{\text{CaL}} = 464 \text{ (pS/pF)}; g_f = 150 \text{ (pS/pF)}
\end{align*}
\]

Fig. 6. One-parameter bifurcation diagrams depicting \(N_{\text{Na}} \) at EPs and during spontaneous firings as functions of \(g_{\text{CaL}} \), for the \(I_f \)-removed (\(g_f = 0 \)), normal (\(g_f = 1 \)), and \(I_f \)-enhanced (\(g_f = 2 \)) versions of the \(N_{\text{Na}} \)-variable Maltsev-Lakatta model cell system. The stationary branch as a locus of \(N_{\text{Na}} \) at EPs (sEP, uEP) and the periodic branches as the \(C_{\text{max}} \) and \(C_{\text{min}} \) of \(N_{\text{Na}} \) during LC oscillations are shown. The stationary branches consist of the stable (sEP) and unstable segments (uEP); the periodic branches also consist of the stable (thick line) and unstable segments (thin line). H bifurcation points are located on the stationary branches. The points at which NS bifurcations of LCs occurred are located on the periodic branches. The mean \(N_{\text{Na}} \) values during arrhythmic oscillations emerging between NS and H at \(g_f = 2 \) were also determined and plotted during 10-s computations at each \(g_{\text{CaL}} \) value, as denoted by the blue points adjacent to the periodic branches.

Fig. 7. \(N_{\text{Na}} \)-dependent bifurcation structures during \(g_{\text{CaL}} \) decreases of the model cell system with \(N_{\text{Na}} \) as a parameter. A: two-parameter bifurcation diagrams for \(N_{\text{Na}} \) and \(g_{\text{CaL}} \) constructed for the models cell with the control \(g_f \) value of 150 pS/pF. The critical \(g_{\text{CaL}} \) values at H bifurcation of EPs and period-doubling (PD) bifurcation of LCs are plotted as functions of \(N_{\text{Na}} \) on the \(g_{\text{CaL}}-N_{\text{Na}} \) parametric plane. The two-parameter plane was divided into 3 distinct areas with different dynamical properties by the loci of bifurcation points: the model cell exhibited rhythmic oscillations around an unstable EP (UR), coexistence of a stable EP and rhythmic oscillation as a stable LC (SR), and quiescence at a stable EP (SQ). The point labeled C denotes the control condition. The horizontal dashed line represents a set of parameter values for construction of the one-parameter bifurcation diagrams shown in B. B: one-parameter bifurcation diagrams as functions of \(N_{\text{Na}} \) for the model cell with the fixed normal \(g_f \) of 150 pS/pF (and \(g_{\text{CaL}} \) of 464 pS/pF). Stationary branches (loci of EPs) and periodic branches (loci of minima/maxima of LCs) are shown for \(V_m \), total intracellular Ca\(^{2+}\) content (\(C_{\text{Ca,cell}} \)), \(I_{\text{NaK}} \), and \(I_{\text{NCX}} \). H and PD bifurcation points are located on the branches.
old potential yielded g_T-dependent shrinkage in the region of unstable EPs (data not shown). In contrast, all the Na_t-fixed versions exhibited g_T-dependent enlargements of the g_{Bk} regions of unstable EPs. The critical parameter values to yield the bifurcation of LCs (to arrhythmic dynamics or quiescence) were very close to or varied in parallel with those at the bifurcation of EPs; the parameter regions of stable LCs (rhythmic firings) were also broader at the control g_T ($g_T = 1$) than at higher g_T ($g_T \geq 2$) in all the Na_t-variable systems (data not shown).

DISCUSSION

In this study, the effects of I_f on robustness of rabbit SAN pacemaker cells were theoretically investigated in connection with the influence of changes in Na_t. We found that I_f effects on bifurcation structures of SAN model cells strongly depend on Na_t and were different in the Na_t-variable and Na_t-fixed systems. The preventing effect of I_f at lower g_T (around the control value) on cessation of pacemaker activity via g_{Bk} decreases or hyperpolarizing loads as observed in the Na_t-fixed system (33) was eliminated and reversed by I_f-dependent changes in Na_t. These findings suggest that I_f does not necessarily enhance but may attenuate SAN cell robustness against hyperpolarizing loads, enervation of I_{CaL}, or other endogenous and exogenous factors, even in physiological g_T ranges.

Impacts of I_f on Robustness of SAN Cell Pacemaking

I_f itself does not necessarily enhance but may attenuate robustness of SAN cells. Inward currents such as I_{CaL} and I_{Na} have been shown to destabilize an EP of SAN cells, being essentially important for robust pacemaking without annihilation (21, 24). Thus I_f is also expected to contribute to EP destabilization in SAN cells. As shown in our previous study (25) and in this study (Figs. 3 and 10), however, increasing I_f did not enlarge but rather shrank the parameter regions of unstable EPs (stationary states), particularly in the Na_t-variable system. Unlike I_{CaL} or I_{Na}, therefore, I_f itself does not prevent but facilitates EP stabilization, not contributing to EP instability; excess I_f may rather counteract the destabilizing effect of I_{CaL} or I_{Na} on EPs. I_f could contribute to EP stabilization mainly via voltage-dependent kinetics, i.e., a rapid decrease (or increase) in inward I_f on depolarization (or hyperpolarization) from stationary-state V_m (Fig. 4).

Maltsev and Lakatta (33) reported for their Na_t-fixed model cell that I_f enlarged the area of rhythmic firings on the parametric plane of g_{CaL} and P_{up}, and thus enhanced SAN cell robustness against inhibitions of the membrane and/or SR Ca$^{2+}$ clock. In our study, however, larger I_f did not enlarge but rather shrank the g_{CaL} (and P_{up}), hyperpolarizing I_{bias}, and g_{Bk} and (ACH) regions of stable LCs (rhythmic firings) via facilitating bifurcations (destabilization) of LCs, particularly in the Na_t-variable system (Figs. 3 and 10). In addition, I_f did not significantly strengthen the enhancing effects of SR Ca$^{2+}$ clock on SAN cell robustness (data not shown). Thus this study suggests that I_f does not necessarily enhance the robustness of pacemaker activity in central or transitional SAN cells of the rabbit. As suggested previously (25), I_f may contribute mainly to the sympathetic regulation of pacemaker frequency in the central or transitional SAN cells, while contributing to the robust pacemaking against electrotonic loads of the atrium in peripheral SAN cells.

Although we could not find experimental evidence that larger I_f attenuates robustness of SAN pacemaker cells, it has been reported that overexpression of HCN-encoded pacemaker current...
silences biological pacemakers derived from guinea pig atrial myocytes as a cautionary note for development of \(I_f \)-based biological pacemakers (30). This observation may reflect that excess \(I_f \) expression yields EP stabilization and thus attenuation of pacemaker cell robustness, supporting our results.

We tested \(I_f \) effects over broad ranges of \(g_f \), including those much higher than (4–12 times) the control values, to demonstrate the \(I_f \) effects more clearly as well as to illustrate the effects of \(I_f \) overexpression; however, it should be noted that in the \(Na_i \)-variable system, as in a real cell, enhancing \(I_f \) attenuates the robustness of SAN cell pacemaking regardless of whether \(g_f \) is relatively small (in physiological ranges) or larger. Larger \(I_f \) far beyond the physiological density dramatically shrunk the parameter regions of spontaneous rhythmic oscillations (Figs. 3 and 10), which is of particular importance for engineering of \(I_f \)-based biological pacemakers where \(I_f \) could be overexpressed to several times the density of native currents, as demonstrated previously (41, 45), given that \(I_f \) overexpression has experimentally been shown to cause cessation of biological pacemaker activity (30). In the \(Na_i \)-variable systems with physiological \(g_f \), the critical \(g_{CaL} \) values to yield bifurcations were much smaller than the normal control \(g_{CaL} \); nevertheless, \(I_f \)-dependent bifurcation to quiescence or arrhythmic dynamics may actually occur in real SAN cells with such smaller \(g_{CaL} \), considering large cell-to-cell variations in \(I_{CaL} \) density (37) and possible inhibition of \(I_{CaL} \) by Ca antagonists (\(I_{CaL} \) blockers) in patients with cardiovascular diseases.

\(I_f \) effects on stability and bifurcation of SAN cells depend on concomitant changes in \(Na_i \). The effects of \(I_f \) on SAN cell robustness, especially that against hyperpolarizing loads, were quantitatively and qualitatively different in the \(Na_i \)-variable and \(Na_i \)-fixed systems, as summarized by the two-parameter bifurcation diagrams (Figs. 3 and 10). As mentioned above, the differences in the \(I_f \) effects between the two systems come from \(I_f \)-dependent changes of \(Na_i \) in the \(Na_i \)-variable system (Figs. 5 and 6); in the \(Na_i \)-fixed model cell, the parameter \(Na_i \) was shown to exert substantial influences on stability and
bifurcations of the model cell during changes in other parameters via modulating \(I_{CaL} \), \(I_{NaK} \), and \(I_{NCX} \) (Figs. 7 and 8).

Marked differences between the \(Na_i \)-variable and \(Na_i \)-fixed systems are that 1) the \(g_{CaL} \), \(I_{bias} \), and \(g_{bK} \) regions of unstable EPs are broader in the \(Na_i \)-variable system than in the \(Na_i \)-fixed system at lower \(g_f \) but shrink dramatically and become narrower in the \(Na_i \)-variable system at higher \(g_f \) (Figs. 3 and 10); 2) with increasing \(g_f \), the \(g_{CaL} \) regions of stable LCs (rhythmic firings) shrank much more prominently in the \(Na_i \)-variable system (Figs. 1 and 3) but enlarged at lower \(g_f \) and then shrank only slightly in the \(Na_i \)-fixed system (33); and 3) as \(g_f \) increased, the \(I_{bias} \) and \(g_{bK} \) regions of stable LCs (rhythmic

Fig. 10. \(I_f \)-dependent bifurcation structures during \(I_{bias} \) applications of the model cells. Shown are two-parameter bifurcation diagrams for \(g_f \) and the amplitude of hyperpolarizing \(I_{bias} \), constructed for the Maltsev-Lakatta model with variable \(Na_i \) (A) and with \(Na_i \) fixed at 10 mM (B). The critical \(I_{bias} \) values at H bifurcations of EPs and PD or NS bifurcations of LCs are plotted as functions of the normalized \(g_f \). The \(g_f \)-\(I_{bias} \) parametric planes were divided into 3 distinct areas with different dynamical properties as in Fig. 3.

Fig. 11. One-parameter bifurcation diagrams depicting \(Na_i \) and \(I_f \) at EPs and during spontaneous firings as functions of hyperpolarizing \(I_{bias} \) amplitude for the \(I_f \)-removed (\(g_f = 0 \)), normal (\(g_f = 1 \)), and \(I_f \)-enhanced (\(g_f = 2 \)) versions of the \(Na_i \)-variable Maltsev-Lakatta model cell system. The stationary branch as a locus of \(Na_i \) or \(I_f \) at EPs (\(uEP \), \(sEP \)) and the periodic branches as the minimum (\(C_{min}, I_{min} \)) and maximum (\(C_{max}, I_{max} \)) of \(Na_i \) or \(I_f \) during LCs are shown. H bifurcation points are located on the stationary branches. The points at which a PD bifurcation of LCs occurred are located on the periodic branches. The mean \(Na_i \) and \(I_f \) values during arrhythmic oscillations emerging between PD and H were also determined and plotted during 10-s computations at each \(g_{CaL} \), as denoted by the blue points.
Fig. 12. *I*~f~ dependent bifurcation structures during *I*~Ca~ inhibition (A) or background *K*~+~ current (*I*~bK~) enhancement (B) of previously developed SAN cell models: W1991, Wilders et al. (53); De1994, Demir et al. (6), Do1996, Dokos et al. (10), K2002, Kurata et al. (20), K2008, Kurata et al. (24), and M2009, Maltsev-Lakatta (33). Shown are two-parameter bifurcation diagrams for *g*~f~ and *g*~Ca~, (both normalized to the control values for each model) for *g*~i~ and background *K*~+~ conductance (*g*~bK~, pS/pF), where the critical parameter values at saddle-node (only for De1994(SN)) or H bifurcations of EPs are plotted on the *g*~f~-*g*~Ca~ and *g*~f~-*g*~bK~ parametric planes. Both the *Na*~i~-variable (left) and *Na*~i~-fixed (right) versions were tested. For the *Na*~i~-fixed versions, *Na*~i~ was fixed at the value close to that reached during normal pacemaking of each model cell: 10 mM for K2002, K2008, and M2009; 7.5 mM for W1991 and Do1996; and 9.6 mM for De1994.

firings) shrank in the *Na*~i~-variable system but enlarged in the *Na*~i~-fixed system (Fig. 10). The larger region of unstable EPs in the *Na*~i~-variable system at the smaller *g*~f~ is associated with lower stationary-state *Na*~i~ at EPs, which further decreases during *g*~Ca~ reductions but increases with enhancing hyperpolarizing *I*~bias~ (Figs. 5A, 6 and 11); in the *Na*~i~-fixed system, decreasing the parameter *Na*~i~ enlarged the parameter regions of unstable EPs and spontaneous firings via increasing *I*~Ca~ and inward *I*~NCX~, as well as decreasing outward *I*~NaK~, at EPs (Figs. 7 and 8). At lower *g*~f~ (in physiological *g*~f~ ranges), therefore, the decreased *Na*~i~ at EPs may further contribute to enhancement of SAN cell robustness. On the other hand, the greater *I*~f~ dependent shrinkage of the unstable regions in the *Na*~i~-variable system is at least in part due to the *I*~f~ dependent increase in *Na*~i~ (*Na*~i~ influx) as predicted theoretically (Figs. 5, 6, 7 and 11; see also Ref. 4) and also observed experimentally (4). In addition, the parameter region of unstable EPs was much narrower than that of stable LCs in the *Na*~i~-fixed system but not (both are comparable) in the *Na*~i~-variable system (Fig. 3), which is also ascribable to the difference in *Na*~i~ at EPs and during LC oscillations in the *Na*~i~-variable system: *Na*~i~ at EPs were much lower than those during LC oscillations (Figs. 5B and 6), yielding enlargement of the parameter region of unstable EPs (Fig. 7A). These results suggest that changes in *Na*~i~ strongly affect stability and bifurcations of SAN cells and thus must be taken into account in experimental and theoretical studies.

I~f~ may enhance SAN cell robustness in combination with other inward currents. The present study suggests that *I*~f~ does not necessarily enhance but may attenuate robustness of SAN cell pacemaking. However, there are many experimental and theoretical reports suggesting the enhancement of SAN cell robustness by *I*~f~ and the *I*~f~-dependent cardiac pacemaker defined as pacemaking to be abolished by blocking *I*~f~: 1) an *I*~f~ blocker abolished spontaneous activity of rabbit SAN cells when hyperpolarizing *I*~bias~ was applied (50); 2) the background current in the pacemaker potential range was outward before *I*~f~ activation in rabbit SAN cells (7); and 3) mouse SAN cells lacking HCN4 or HCN2 exhibited sinus dysrhythmia, recurrent sinus pause, and quiescence, especially at low heart rates, e.g., under muscarinic stimulation or in the presence of *I*~f~ blockers (16, 31, 32). The *I*~f~-based regular pacemaking was also observed in mouse embryonic cardiomyocytes (48, 56), mouse embryonic stem (ES) cell-derived cardiomyocytes (43), and neonatal rat ventricular myocytes (11). Furthermore, previous studies regarding biological pacemaker engineering have demonstrated...
that I_f-based biological pacemakers can be created in the atrium and ventricle by HCN gene transfer (3, 42, 49, 54). These experimental findings, suggesting the enhancement of SAN cell robustness by I_f and the I_f-dependent pacemaking, are apparently inconsistent with our results in this study. Nevertheless, our previous study (25) suggests that the I_f-dependent pacemaking is possible under hyperpolarized conditions in SAN cells and that I_f may enhance the robustness of central and peripheral SAN cells against hyperpolarizing loads in combination with $I_{Ca,\text{L,D}}$ and $I_{Ca,\text{T}}$, respectively. Thus bifurcations leading to I_f-dependent pacemaking and I_f-based enhancement of SAN cell robustness may actually occur in SAN (or other regions of the heart) under hyperpolarized or other conditions via the combined actions of I_f and other inward currents.

As suggested previously (25), whether I_f enhances robustness of SAN cells strongly depends on the presence of other inward currents (e.g., I_{K1}, I_{Na}) that destabilize EPs (via Hopf bifurcations) and/or eliminate stable EPs (via saddle-node bifurcations). Such inward currents also include the class D $I_{Ca,\text{L,D}} (I_{Ca,\text{L,D}})$ and $I_{Ca,\text{T}}$ in the central SAN of mouse or other species and embryonic or fetus hearts. For instance, $I_{Ca,\text{L,D}}$, which activates in the pacemaker potential range but is not present in the rabbit SAN, may contribute to enhancement of SAN cell robustness and emergence of I_f-dependent pacemaking in the mouse SAN; indeed, I_f at lower conductance (physiological densities) enhanced robustness of the Na, variable system modified by incorporating $I_{Ca,\text{L,D}}$ to simulate mouse SAN cell pacemaking (data not shown). Requirement of the combined effects of I_f and other inward currents such as I_{Na} and $I_{Ca,\text{L,D}}$ was also suggested for enhancement of biological pacemaker functions (23). In fact, the combined action of I_f and $I_{Ca,\text{L,D}}$ or $I_{Ca,\text{T}}$ as a requisite to generation of spontaneous rhythmic firings has been suggested for mouse atrioventricular cells (36) and ES cell-derived cardiomyocytes (55).

Roles of I_f in pacemaker generation may be different depending on regions and species. It is worthwhile noting that I_f can enhance robustness of pacemaker cells in two different ways (25): 1) by preventing a saddle-node bifurcation (emergence of a stable EP at more negative V_m) as in the rabbit central SAN cell with relatively large $I_{Ca,\text{T}}$ and I_{Na}, and 2) by preventing a Hopf bifurcation (stabilization of an EP) as in the rabbit peripheral SAN cell with relatively large $I_{Ca,\text{T}}$. Thus I_f block can yield bifurcations to quiescence of pacemaker cells via a saddle-node or Hopf bifurcation (25). In the Maltsev-Lakatta model, increasing I_f did not enhance the robustness of pacemaker activity, because hyperpolarizing loads did not cause a saddle-node bifurcation of EPs in this model cell with relatively small $I_{Ca,\text{T}}$. However, our previous study (25) suggests that I_f at lower conductance (g_f smaller than the control value) can enhance the robustness against hyperpolarizing loads of rabbit central SAN cells by preventing a saddle-node bifurcation, which occurs in the presence of relatively large I_{Na}. The emergence of a saddle-node bifurcation during I_f inhibition or hyperpolarizing loads is comparable to the report of DiFrancesco (7) for SAN cells, and is also applicable to pacemaker activity of Purkinje fibers, which possess the inward-rectifier K^+ channel current (I_{K1}) at relatively low density (9, 47). Thus I_f can improve pacemaker cell robustness against hyperpolarizing loads chiefly by supplying inward currents to prevent emergence of a stable stationary state at more negative V_m. On the other hand, I_f may enhance the robustness against hyperpolarizing loads of rabbit peripheral SAN cells, as well as SAN cells of other species and spontaneously firing cells of embryonic hearts, by preventing a Hopf bifurcation (EP stabilization), given that they possess relatively large inward currents such as I_{Na}, $I_{Ca,\text{L,D}}$, and $I_{Ca,\text{T}}$, which are capable of destabilizing EPs (25).

In our previous study on biological pacemakers (23), I_f facilitated the generation of pacemaker activity during downregulation of I_{K1} in human ventricular myocyte model by yielding a saddle-node bifurcation (elimination of a stable EP with the most negative stationary-state V_m) at higher I_{K1} conductance (g_{K1}). Using a coupled-cell model, we also showed that I_f enhanced the robustness (capability of pacemaking and driving nonpacemaker cells) of biological pacemakers against electrototoxic loads of nonpacemaker cells by facilitating a saddle-node bifurcation to eliminate a stable EP with the most negative stationary-state V_m in the nonpacemaker cells during increases in the gap junction conductance, when g_{K1} of the surrounding nonpacemaker cells is relatively small (23). However, larger I_f did not enhance robustness or driving ability of biological pacemaker cells, suggesting again the undesirability of excess expression of I_f and the requirement of coexpression of I_f and other inward currents such as I_{Na} and $I_{Ca,\text{L,D}}$ for the development of I_f-based biological pacemakers (30).

Limitations of Study

As described in our previous articles (24, 25), there are many limitations of our theoretical study, including incompleteness of the models and lack of experimental evidence. The intracellular factors are known to exert substantial effects on ion channel functions and pacemaker dynamics, possibly affecting bifurcation structures, as well. More elaborate models incorporating detailed descriptions of the intracellular Ca^{2+} handling and many other modulating factors have to be developed and tested for future investigations on the roles of I_f and other components in SAN pacemaking. Another shortcoming of the present study may be the use of classical Hodgkin-Huxley formalism for the kinetic formulation of I_f and other time-dependent voltage-gated channel currents. More general and realistic schemes have been developed for native I_f channels (7) and HCN channel isoforms (1) as well as for other individual channels. Thus further sophisticated models based on more general and realistic Markovian state schemes need to be developed and tested in future investigations.

We showed that our conclusions regarding the roles of I_f could commonly be derived from all the SAN cell models tested in this study (Fig. 12); the effects of I_f on robustness of SAN cell pacemaking were qualitatively the same regardless of which model was used as a base cell model or which I_f formula was incorporated (data not shown; see Ref. 25). Nevertheless, the influences of I_f on bifurcation properties should be tested for future novel (more elaborate) SAN cell and I_f models for understanding the roles of I_f in SAN pacemaking more profoundly.

In the present study, we examined the effects of I_f on robustness of single SAN cells. However, we need investigations of the I_f effects on pacemaking and driving ability of the SAN in vivo, which require one- to three-dimensional multicellular models, like those used in previous studies (13, 17, 18).

38. Noble D, Denyer JC, Brown HF, DiFrancesco D. Reciprocal role of the inward currents i\(_{Na}\), and i\(_{Kr}\) in controlling and stabilizing pacemaker

REFERENCES

