Modulation of ventricular transient outward K⁺ current by acidosis and its effects on excitation-contraction coupling

Noriko Saegusa, Vivek Garg, and Kenneth W. Spitzer

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah

Submitted 28 January 2013; accepted in final form 6 April 2013

Saegusa N, Garg V, Spitzer KW. Modulation of ventricular transient outward K⁺ current by acidosis and its effects on excitation-contraction coupling. Am J Physiol Heart Circ Physiol 304: H1680–H1696, 2013.—The contribution of transient outward current (Iₒ) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Iₒ, L-type calcium current (I₉ᵥ,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Iₒ by ~50% in myocytes with both high (epicardial) and low (papillary muscle) Iₒ densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Iₒ, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Iₒ inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from ~80 mV. The effects of low pHi-induced inhibition of Iₒ are much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak I₉ᵥ,L, increased net calcium influx via I₉ᵥ,L and increased CaT amplitude. In summary, in contrast to low pHi, intracellular acidosis has a marked inhibitory effect on ventricular Iₒ, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells.

transient outward current; acidosis; excitation-contraction coupling; rabbit ventricular myocytes

TRANSIENT OUTWARD K⁺ CURRENT (Iₒ) is the major repolarizing current flowing during the early repolarization phase of the cardiac action potential (AP) in a variety of cell types including human and rabbit ventricular myocytes and is largely responsible for phase 1 and the “spike-and-dome” configuration (4, 12, 17, 20, 22, 31, 48). By modulating the initial voltage trajectory of the AP, Iₒ importantly influences the overall AP waveform through voltage-dependent effects on other ionic currents such as L-type calcium current (I₉ᵥ,L), Na⁺/Ca²⁺ exchange (NCX) current, and delayed rectifier currents (34). In this regard, several studies have shown that inhibition of Iₒ markedly affects excitation-contraction (E-C) coupling by altering transsarcolemmal Ca²⁺ flux via I₉ᵥ,L and NCX, with secondary effects on calcium loading of the sarcoplasmic reticulum (SR) (5, 6, 11, 13, 27, 42, 43, 53). The expression and magnitude of cardiac Iₒ are regulated by a variety of factors and conditions including hormones, metabolic inhibition, and hypertrophy/failure with consequent effects on AP configuration (32, 36). In addition, previous work has shown that Iₒ in rat ventricular myocytes, measured at room temperature, is altered by extracellular acidosis [low extracellular pH (pHo)] (50), intracellular acidosis [low intracellular pH (pHi)] (58, 59), and simultaneous reductions in pHo and pHi (combined acidosis) (24). Low pHi elicits right shifts in inactivation toward less negative potentials causing increased Iₒ at voltages of approximately +50 mV to +60 mV when initiated from depolarized potentials but has little or no effect when initiated from voltages near the normal resting potential (50). In contrast, intracellular acidosis (pHo 7.4), induced by pipette acid loading, is reported to decrease Iₒ, over the voltage range of ~30 mV to +60 mV (58, 59). However, pHi was not measured in these reports, and subsequent work has demonstrated that accurate pHi dialysis via a suction pipette is very difficult to achieve, given the high intracellular mobility (52, 61). Thus the quantitative relationship between ventricular pHi and Iₒ remains unresolved. To address this issue, in the present study we measured pHi and Iₒ at 37°C in rabbit ventricular myocytes, a preparation with a more humanlike AP than rat ventricle, using a more reliable technique for selectively reducing pHi.

Also unresolved is the role of Iₒ in mediating pH-induced changes in AP repolarization and calcium handling. Using a mixture of rabbit myocytes from the entire left ventricle, we recently reported that a selective reduction in pHi (pHo 7.4) slowed the rate of phase 1 repolarization, reduced the notch, elevated the AP plateau, and prolonged AP duration (APD). These AP changes are consistent with Iₒ inhibition and may indirectly contribute to the effects of low pHi on ventricular E-C coupling. However, because Iₒ exhibits a large transmural density gradient (epicardial > endocardial) (4, 9, 17, 18, 31), our use of a mixture of cells from the entire left ventricle meant that phase 1 and the notch varied considerably from one cell to another. Thus it remains unclear how pHi-induced changes in Iₒ modulate the AP, I₉ᵥ,L, and the calcium transient (CaT). Here we address this question in rabbit ventricular myocytes displaying both high [epicardial (Epi)] and low [papillary muscle (PM)] Iₒ densities, using AP voltage clamps and fluo-4 fluorescence.

Collectively the results demonstrate that intracellular acidosis markedly reduces ventricular Iₒ, which significantly contributes to the accompanying changes in early AP repolarization, resulting in indirect modulation of E-C coupling.

MATERIALS AND METHODS

Myocyte Isolation

The experiments were performed on left ventricular myocytes isolated from adult rabbits of both sexes by enzymatic digestion. To minimize transmural differences in I₉ᵥ,L density (37), only male rabbits were used for the measurements of I₉ᵥ,L and CaTs. All
procedures involving animals were approved by the Animal Care and Use Committee of the University of Utah and complied with the American Physiological Society’s “Guiding Principles for the Care and Use of Vertebrate Animals in Research and Training.” RABBITS were anesthetized with pentobarbital sodium (50 mg/kg iv), and the excised heart was attached to an aortic cannula and perfused with solutions gassed with 100% O2 and held at 37°C, pH 7.3. The heart was first perfused for 5 min with a Ca2+-free solution at 37°C containing (in mM) 92.0 NaCl, 4.4 KCl, 11.0 dextrose, 5.0 MgCl2, 20.0 taurine, 5.0 creatine, 5.0 sodium pyruvate, 1.0 NaH2PO4, 24.0 HEPES, and 12.5 NaOH (pH 7.3). This was followed by 15 min of recirculation with the same solution containing 0.15 mg/ml collage-nase P (Roche Diagnostic, Mannheim, Germany), 0.05 mg/ml trypsin (type XIV, Sigma Chemical), and 0.05 mM CaCl2. The heart was then perfused for 5 min with the same solution containing no enzymes. The ventricle was isolated and minced, shaken for 10 min, and then filtered through a nylon mesh. Cells were stored at room temperature in the normal control bathing solution. To obtain cells with both low and high Ito densities, myocytes were isolated from both PMs and the epicardial layers (Epi) of the left ventricle, respectively (17). All cells used in this study were rectangular, had well-defined striations, and did not spontaneously contract. All experiments were conducted within 10 h of isolation.

Cell Culture

Human embryonic kidney cells (HEK 293T) were cultured in DMEM supplemented with 10% fetal bovine serum, l-glutamine (2 mM), penicillin (100 IU/ml), and streptomycin (100 μg/ml). HEK 293T cells were plated onto 35-mm culture dishes and transfected with human (h)Kv1.4 (pcDNA3) along with green fluorescent protein (pEGFP) or hKv4.3 (pIREs-GFP) with Lipofectamine (Invitrogen). Experiments were conducted 1–2 days after transfection.

Cell Superfusion Chamber

Isolated ventricular cells were superfused at 4 ml/min (37 ± 0.3°C), solution exchange within the experimental chamber occurring in ~5 s. The glass bottom of the chamber was coated with laminin (Collaborative Research, Bedford, MA) to improve cell adhesion. HEK 293T cells were bathed in solution at 23 ± 1.0°C without laminin coating the bottom of the bath.

Bathing Solutions and Drugs

Two types of acidosis were applied to myocytes: extracellular acidosis (pHl, 6.5, pHr ~7.1) and intracellular acidosis (pHl, 7.4, pHr ~6.7) as previously described (41). The normal control solution for extracellular acidosis (low pHr) and intracellular acidosis (low pHr) contained (mM) 126.0 NaCl, 11.0 dextrose, 4.4 KCl, 1.0 MgCl2, 1.08 CaCl2, and 24.0 HEPES titrated to pH 7.4 with 1 M NaOH. During acidosis experiments all bathing solutions contained 30 μM cariporide (Sanofi-Aventis, Frankfurt, Germany) to selectively block sodium/hydrogen exchange (NHE) and add no added CO2 or HCO3 to block transsarcemomal transport of acid equivalents via Na+-HCO3 cotransport (NBC) (50) and CI−/HCO3 exchange (57). The solution used to create extracellular acidosis had the same composition as the control solution except that its pH was titrated to 6.5 with NaOH. In separate experiments we found that 30 μM cariporide had no effect on Ito (n = 5, data not shown) or Ica,t (41).

The solution used to induce intracellular acidosis with pHr held at 7.4 was prepared by equimolar replacement of 80.0 mM sodium acetate (NaAc) in the control solution for NaCl, as recently described (41). Decreasing pHl by application of extracellular acetate is a widely used technique and results from rapid influx of uncharged protonated acetate, which then releases protons intracellularly. To compensate for the decrease in Ca2+ activity in the bathing solution due to acetate binding, CaCl2 was increased in the 80 mM acetate solution from 1.08 mM to 1.37 mM (41). The bathing solutions for HEK cells had the same composition as those for myocytes except that 40 mM NAc was used to induce intracellular acidosis.

During several voltage-clamp protocols, Ica,t, and the inward-rectifying potassium current (Itr,IK) were blocked by CdCl2 (200 μM, Sigma-Aldrich) and BaCl2 (200 μM, Sigma-Aldrich), respectively. Sodium current (Ina) was inhibited in some experiments by equimolar replacement of NaCl with N-methyl-D-glucamine, and pHl was adjusted to 7.4 with HCl. In this case CaCl2 was reduced to 0.1 mM to retard calcium overload upon exposure to sodium-free solution. Ito and the rapid delayed-rectifier potassium current (Ito) were inhibited in some experiments by including 3 mM 4-aminopyridine (Sigma-Aldrich) and 2 μM E-4031 (Sigma-Aldrich), respectively. In contrast to a previous report (47), BaCl2 (200 μM) had no effect on Ito (n = 4, data not shown). To measure Ica,t, potassium chloride was replaced with 4.4 mM CsCl in the control solutions. A mixture of 10 μM nifedipine (Sigma-Aldrich) and 200 μM CaCl2 was used to block Ica,t for Ica,t voltage-clamp experiments.

Pipette Filling Solutions

The normal filling solution used for recording APs in myocytes contained (in mM) 110.0 K-glucuronate, 10.0 KCl, 5.0 Na-glucuronate, 5.0 MgATP, 5.0 phosphocreatine, 1.0 NaGTP, and 10.0 HEPES titrated to pH 7.2 with 1 M KOH. This solution was also used when recording CaTs that were initiated with AP voltage clamps (AP clamp), without simultaneous measurement of Ica,t. The filling solution used to measure Ito in myocytes and HEK 293T cells expressing Kv4.3 and Kv1.4 had the same composition as the normal filling solution except that it also contained 5.0 mM BAPTA. Corrections were made for liquid junction potentials. Buffering intracellular calcium with BAPTA eliminates Ca2+-activated Cl− current, also known as Ito2, which is present in rabbit ventricular myocytes (22) and activated by extracellular acidosis (23). Intracellular BAPTA also blocks the CaTs and thus minimizes the complicating effects of Ca2+-activated NCX (7). BAPTA is preferable to EGTA because of its faster Ca2+ binding kinetics and lower pH sensitivity (51).

The pipette filling solution used for Ica,t, voltage-clamp experiments (rectangular voltage steps and AP clamps) contained (in mM) 120.0 GluCI, 5.0 NaCl, 10.0 tetraethylammonium chloride (TEA-Cl), 5.0 MgATP, 5.0 phosphocreatine, 1.0 NaGTP, 5.0 BAPTA, and 10.0 HEPES titrated to pH 7.2 with 1 M CsOH. Corrections were made for liquid junction potentials. BAPTA was not present in experiments in which Ica,t and CaTs were simultaneously recorded (see Table 2) and when only CaTs were recorded during AP clamps (see Fig. 12).

Intracellular acidosis (pHl, 7.4) was induced in some experiments with pipette acid loading. The filling solution contained (mM) 110.0 KCl, 5.0 NaCl, 5.0 MgATP, 5.0 phosphocreatine, 1.0 NaGTP, and 10.0 HEPES titrated to pH 6.6 with 1 M KOH.

Electrophysiological Techniques

All electrophysiological measurements in both myocytes and HEK 293T cells were made with whole cell ruptured patch pipettes. Pipettes (Corning 8250 glass) for myocytes and HEK 293T cells had resistances of 1–2 MΩ and 2.5–4.0 MΩ, respectively, when filled. Myocyte APs were recorded with an Axoclamp-2A amplifier system (Axon Instruments) in bridge mode, and voltage clamping (step clamps and AP clamps) was achieved with an Axopatch 200B clamp system using a CV203BU headstage. APs were triggered with brief (2–3 ms) square pulses of depolarizing intracellular current (~2 nA), and APD was measured at 90% repolarization (APD90). Membrane potential (Vm) and membrane current (Ica,t and Ica,i) were filtered at 5 kHz, digitized at 50 kHz with a 16-bit A/D converter (Digidata 1322A), and analyzed with pCLAMP 8 software (Molecular Devices). The reference electrode was a flowing 3 M KCl bridge. Compensation for series resistance (75–80%) and capacitance were performed elec-
tronically. Membrane currents were normalized for cell capacitance (pA/pF).

Current-voltage (I-V) relationships for $I_{Ca,t}$ were determined by applying test pulses from -40 mV to $+60$ mV (400-ms duration) at a cycle length (CL) of 5 s. Typically, each test pulse was preceded by a prestep from a holding potential of -80 mV to -40 mV (duration 40 ms) to inactivate sodium current. Zero-sodium bathing solution was used in some experiments to block sodium current. For each test pulse the amplitude of $I_{Ca,t}$ was measured as the difference between peak outward current and the current level at the end of the depolarizing clamp pulse. This clamp protocol was applied first in the control solution and then after 2 min in the acidic test solution. Each cell was exposed only once to an acidic test solution.

$I-V$ relationships for $I_{Ca,t}$ in myocytes were determined with the same protocol (CL = 5 s). At the end of the experiment the protocol was repeated in the presence of 200 μM CdCl$_2$ and 10 μM nifedipine to correct for background current.

$I-V$ relationships for hKv4.3 and hKv1.4 expressed in HEK 293T cells were determined by holding the cell at a potential of -80 mV and applying test pulses from -40 mV to $+60$ mV (500-ms duration) at CL of 5 s and 30 s, respectively, and the clamp protocol was applied first in the control solution and then after 1 min in the acidic test solution.

The steady-state voltage dependence of $I_{Ca,t}$ activation in myocytes was determined with results obtained from the I-V curve clamp protocol. Relative conductance ($G_{Ca,max}$) was calculated as $G = I_{Ca,t}/(V_m - V_{rev})$, where V_m is the clamp potential and V_{rev} is the estimated reversal potential (-76 mV was used as the estimated reversal potential, V_{rev} was calculated by Nernst equation and liquid junction potential). The relationship was fit to a Boltzmann function, and G_{max} was estimated by extrapolation of the curve to more positive potential. The resulting normalized G-V relationships were again fit with a Boltzmann function: $G_{Ca,max} = 1/[1 + \exp(V_m - V_{1/2}/k)]$, where $V_{1/2}$ and k are the half-maximal activation potential and the slope (mV) of the curve, respectively.

The steady-state voltage dependence of $I_{Ca,t}$ inactivation in myocytes was determined with a double-pulse protocol. Conditioning clamp pulses ranging from -80 mV to 0 mV (500-ms duration) were initiated from a holding potential of -80 mV at a CL of 5 s. After the end of each conditioning pulse V_m was stepped to -40 mV for 10 ms before application of the test pulse to $+60$ mV. $I_{Ca,t}$ was negligible at $+60$ mV and thus is unlikely to contaminate measurements of $I_{Ca,t}$. Peak currents elicited by the test pulses were normalized as $I_{Ca,t}/I_{Ca,max}$ and plotted as a function of conditioning V_m. The curves were fit with a Boltzmann function: $I_{Ca,t}/I_{Ca,max} = 1/[1 + \exp(V_m - V_{1/2}/k)]$, where V_m is the conditioning voltage, and $V_{1/2}$ and k are the half-maximal inactivation potential and the slope (mV) of the curve, respectively.

The clamp protocol for quantifying the time course of $I_{Ca,t}$ inactivation was the same as that used to generate the I-V curves. With Clampfit software, the time course of inactivation of $I_{Ca,t}$ was fit with a double-exponential function as previously described (22, 45) according to

$$I = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2} + C$$

where I is the current (pA/pF) at time t (ms), A_1 (pA/pF) and A_2 (pA/pF), respectively, are the amplitudes of fast and slow components, τ_1 and τ_2, respectively, are the fast and slow inactivation time constants (ms), and C is the current remaining at the end of the clamp step (pA/pF).

The time course of recovery from $I_{Ca,t}$ inactivation was determined with a double-pulse protocol at a CL of 10 s. A conditioning clamp pulse (P_1) to $+60$ mV (400-ms duration) was applied from a holding potential of -80 mV, followed at a variable interval ranging from 100 ms to 5 s by the test pulse (P_2) of 400-ms duration to $+60$ mV. All experiments were performed without Cd$^{2+}$. Sodium-free bathing solution was used to block I_{Na} in the extracellular acidosis experiments. For the intracellular acidosis experiments, I_{Na} was inactivated by application of a prepulse from -80 mV to -40 mV (duration 40 ms) before clamping to $+60$ mV. The recovery from inactivation of $I_{Ca,t}$ was fit with a single exponential as previously described (45) according to

$$I = A e^{-t/\tau} + C$$

where I is the current (pA/pF) at time t (ms), A (pA/pF) is the amplitude, and C is the current remaining at the end of the clamp step (pA/pF).

Action Potential Voltage Clamps

AP voltage-clamp experiments (AP clamp) were performed to assess the effects of intracellular acidosis on $I_{Ca,t}$ under more physiological conditions than with rectangular clamp pulses. The bathing and pipette solutions used for these experiments were the same as those used to generate the I-V curve, except that all of the bathing solutions also contained 2 mM E-4031 to block I_{Kr}, AP templates (control and intracellular acidosis) were made from representative records obtained during current-clamp experiments. Each AP clamp was preceded by a prestep from -80 mV to -40 mV (40-ms duration) at a CL of 5 or 2 s. A train of 10 conditioning clamps was first applied in the control solution with the control AP template. They were then repeated after 2 min in the test solution with the intracellular acidosis AP template. The entire protocol was then repeated in the presence of 3 mM 4-aminopyridine to block I_{Na}. The difference current was used to determine $I_{Ca,t}$ flowing during the AP.

A very similar protocol was used to measure $I_{Ca,t}$ in Epi and PM myocytes during AP clamps. AP templates (control and intracellular acidosis) were made from representative records obtained during current-clamp experiments. All measurements were performed in the control bathing solution. Ten conditioning AP clamp pulses were applied to the cells prior to the test clamp to ensure steady-state loading of SR Ca$^{2+}$ when $I_{Ca,t}$ and CaTs were recorded simultaneously (see Table 2) and when only CaTs were recorded (see Fig. 12). The control AP template served as the conditioning pulse for the control test clamp, and the intracellular acidosis AP template served as the conditioning pulse for the acidosis test clamp. The entire protocol was then repeated in the presence of 200 μM CdCl$_2$ and 10 μM nifedipine to correct for background current.

Measurement of Intracellular pH

pH_i was measured in single resting myocytes and HEK 293T cells with carboxy-seminaphthorhodafluor-1 (carboxy-SNARF-1), as previously described (2).

Measurement of Intracellular Calcium

CaTs were detected in single myocytes with a similar epifluorescence system using the fluorescent indicator fluo-4. Cells were incubated in the normal control solution containing 10 μM fluo-4 AM (Molecular Probes) and 0.3 mM probenecid at 25°C for 15 min. They were then continuously bathed in the same solution containing no indicator. Probenecid (0.3 mM) was included in the bathing solutions to help retard fluo-4 loss from the cells. Fluorescence emission (535 ± 11 nm, band-pass filter) was collected with a photomultiplier tube via the ×40 oil objective (numerical aperture 1.3) during continuous excitation at 485 nm with a 150-W xenon lamp. Fluorescence signals were background corrected and expressed as $\frac{F}{F_0}$ (the ratio of fluorescence during the CaT divided by diastolic fluorescence). CaT duration was measured as the time from the upstroke to 50% recovery (CaTD_{50}). CaTs were elicited with AP clamps (CL = 2 s) during superfusion with the normal bathing solution, using the appropriate AP templates for control and intracellular acidosis. A train of at least 10 conditioning clamps was applied to the cells to achieve steady-state Ca$^{2+}$ loading of the SR. The normal pipette filling solution was used (no Cs$^+$, no BAPTA) when only CaTs were measured. For experi-
ments in which CaTs and \(I_{Ca,L} \) were simultaneously recorded, \(K^+ \) in the bathing solution was replaced with Cs\(^+\) and the pipette filling solution was the normal solution used for \(I_{Ca,L} \) measurements except that it did not contain BAPTA. The gain of E-C coupling was calculated as the maximum rate of rise of the CaT divided by the simultaneously recorded peak \(I_{Ca,L} \), as previously described (16).

Statistics

Summarized results are expressed as means \(\pm \) SE. A paired Student’s \(t \)-test was used to test significance between results obtained with each cell serving as its own control. An unpaired \(t \)-test was used to test significance between two different groups of cells. \(P < 0.05 \) was considered significant.

RESULTS

Changes in \(pHi \) During Extra- and Intracellular Acidosis

Figure 1, \(A \) and \(B \), illustrate the changes in \(pHi \) in rabbit ventricular myocytes resulting from 2 min of extracellular and intracellular acidosis, respectively. \(HCO_3^- \)-dependent transporter activity was minimized by superfusing with \(CO_2/\ HCO_3^- \)-free solution, while NHE activity was blocked with 30 \(\mu M \) cariporide. As we have previously shown in rabbit ventricular myocytes (41), 2 min of low \(pH_o \) caused negligible changes in \(pHi \), reducing it by only \(-0.05 \) units (Fig. 1, \(A \) and \(D \)). In contrast, intracellular acidosis induced by superfusion with 80.0 \(mM \) acetate (\(pH_i \) 7.4) for 2 min markedly reduced \(pH_i \) by 0.47 units from a mean value of 7.22 \(\pm \) 0.02 to 6.75 \(\pm \) 0.04 (\(n = 17 \); Ref. 41). We have also found that \(pH_i \) is unaffected by attachment with a suction pipette filled with the normal solution (\(pHi_{pipette} = 7.2 \); Ref. 41). The 2-min acidosis protocol was used for both types of acidosis in all subsequent myocyte experiments.

Several earlier studies used pipette acid loading to induce intracellular acidosis in cardiac myocytes, on the assumption that \(pHi \) equilibrates with the \(pH \) of the pipette filling solution (25, 29, 58, 59). However, these studies did not include measurements of \(pHi \). Figure 1C shows that 10 min of intracellular dialysis with a pipette \(pH \) of 6.6 induced a fall in the

Fig. 1. Changes in intracellular \(pH \) (\(pHi \)) and intracellular \(H^+ \) concentration ([\(H^+ \])i) induced by extra- and intracellular acidosis and by pipette acid loading. **A:** a reduction in extracellular \(pH \) (\(pH_o \)) from 7.4 to 6.5 for 2 min elicited only a small drop in \(pHi \). **B:** in contrast, exposure to 80.0 \(mM \) acetate (\(pH_o \) 7.4) induced a rapid sustained fall in \(pHi \). **C:** example record showing the marked difference between intracellular acidosis (\(pH_o \) 7.4) induced with 80 \(mM \) acetate and with pipette dialysis [pipette \(pH \) (\(pH_{pipette} \)) 6.6]. **D:** summarized results for extracellular acidosis (\(n = 7 \)), intracellular acidosis (\(n = 17 \)), and pipette acid loading (\(n = 4 \)). We previously reported the summarized results shown in **D** for extra- and intracellular acidosis (41). The example records in **A** and **B** have not been previously published. All results shown here were obtained from a mixture of cells from all regions of the left ventricle. **\(* * \)P \(< 0.01 \) paired, control vs. acidosis. In separate experiments, we found no significant difference between the drop in \(pH_i \) induced by 80.0 \(mM \) acetate (\(pH_o \) 7.4) in epicardial (Epi, \(n = 4 \)) and papillary muscle (PM, \(n = 7 \)) myocytes (data not shown).
measured pH_i of only 0.17 units, from 7.20 ± 0.04 to 7.03 ± 0.04 (n = 4). When expressed as change in intracellular H^+ concentration ([H^+]_i), this represents an ∼1.5× increase compared with a 3.1× increase induced by the 80.0 mM acetate pulse. Thus, assuming that pH_i = pH_pipette will seriously overestimate the degree of intracellular acidosis and emphasizes the importance of measuring pH_i as we have done in the present study.

Effect of Acidosis on Action Potential Repolarization in Epicardial Myocytes

Because we used myocytes from all regions of the left ventricle in our previous study of pH effects on AP repolarization, there were large cell-to-cell differences in phase 1 and the notch (41). In this series of experiments we focused on the AP response of Epi myocytes to extracellular and intracellular acidosis. As shown in Fig. 2, epicardial APs display a prominent phase 1 repolarization and notch, mediated primarily by the high density of I_{to} displayed in this cell type (17).

In response to 2 min of extracellular acidosis, the plateau was depressed and APD was shortened but the notch was largely unaffected (Fig. 2, A, C, and D). The resting membrane potential (CL = 2 s) was slightly depolarized by extracellular acidosis (control = −87.1 ± 2.5 mV, acidosis = −83.8 ± 2.7 mV; n = 5, *P < 0.05, paired). The effects of extracellular acidosis on cardiac AP configuration are complex, with reports of inhibition of the rapid delayed-rectifier current I_{Kr} (8), I_{Ca,L} (8, 41), and both peak and persistent sodium current (30). In addition, we have recently shown that the changes in rabbit ventricular repolarization induced by low pH_o are largely mediated by a reduction in I_{Ca,L} and are unlikely to involve I_{to} (41).

In contrast, intracellular acidosis markedly slowed phase 1 repolarization, reduced the notch, elevated the plateau, and prolonged APD (Fig. 2, B–D; pacing CL = 2 s). The percent change in APD_{90} induced by low pH_i at CL = 2 s (+88.5 ± 9.0%, n = 11) was not significantly different from that at CL = 5 s (+86.2 ± 21.0%, n = 4). The resting membrane potential (CL = 2 s) was slightly depolarized by low pH_i (control = −81.0 ± 1.0 mV, acidosis = −79.0 ± 1.5 mV; n = 11, *P < 0.05, paired), but the overshoot did not change (control = 45.7 ± 1.2 mV, acidosis 45.3 ± 1.3 mV; n = 11).

We also preformed AP measurements (CL = 2s) with 10 mM BAPTA in the suction pipette to minimize Ca^{2+}-activated Cl^- current (I_{Cl,Ca}). This concentration of BAPTA blocks CaTs and the rise in diastolic calcium induced by lowering pH_i (41). With BAPTA dialysis the changes in AP repolarization during

Fig. 2. Effect of extra- and intracellular acidosis on epicardial action potentials (APs). A: extracellular acidosis (pH_o 6.5) shortened AP duration (APD). Inset: expanded view of phase 1 repolarization. B: intracellular acidosis (80.0 mM acetate) prolonged APD, markedly slowed phase 1 repolarization, and nearly eliminated the notch. Inset: expanded view of phase 1 repolarization. C: summarized changes in APD at 90% repolarization (APD_{90}) in low pH_o (n = 5) and low pH_i (n = 11). D: changes (Δ) in APD_{90} shown in C expressed as % relative to control. The normal pipette filling solution was used in these experiments (no BAPTA). Pacing cycle length (CL) for all experiments was 2 s. *P < 0.05, **P < 0.01, paired, control vs. acidosis.
both types of acidosis were qualitatively the same as those without BAPTA and included AP shortening in low pH, and AP lengthening in low pH, suggesting that changes in $I_{\text{Cl,Ca}}$ did not play a major role [intracellular acidosis: control APD$_{90}$ = 414 ± 25 ms, acidosis APD$_{90}$ = 922 ± 36 ms (n = 2, P < 0.02, paired); extracellular acidosis: control APD$_{90}$ = 585 ± 50 ms, acidosis APD$_{90}$ = 519 ± 53 ms (n = 3, P < 0.05, paired)].

Numerous studies have demonstrated that I_{to} inhibition slows phase 1 repolarization, elevates the plateau, and reduces the notch (4, 17, 18, 39). Thus the results in Fig. 2 strongly suggest that the I_{to} activated during APs is inhibited by intracellular acidosis but largely unaffected by extracellular acidosis.

Effect of Acidity and Cadmium on Steady-State Voltage Dependence of I_{to} Inactivation

In this series of experiments we examined the separate actions of extracellular and intracellular acidosis on the voltage dependence of I_{to} inactivation in Epi myocytes (Fig. 3). We also assessed the effect of Cd$^{2+}$ on inactivation since it was used in other protocols to block $I_{\text{Ca,L}}$. After each 500-ms-duration conditioning step, V_m was clamped to +60 mV, which is near the peak of the typical rabbit ventricular AP (Fig. 1) and activates a large I_{to} with minimal contamination by $I_{\text{Ca,L}}$.

Previous work with rat ventricular myocytes, measured at room temperature, reported that both extracellular acidity (50) and simultaneous reductions in pH$_c$ and pH$_i$ (24) induced right shifts in the voltage dependence of I_{to} inactivation. Our results, measured at 37°C without Cd$^{2+}$ or dihydropyridine Ca$^{2+}$ channel blockers, confirms that extracellular acidity (pH$_c$, 6.5) has the same effect in rabbit epicardial ventricular myocytes, shifting the inactivation $V_{1/2}$ by ~10 mV (Fig. 3A; Table 1, no Cd$^{2+}$). The same result was also obtained in rabbit cells bathed in sodium-free solution containing no Cd$^{2+}$ (Table 1). In accord with earlier work in rat and rabbit myocytes (1, 50, 55), we also found that Cd$^{2+}$ (200 μM) right-shifted the voltage dependence of I_{to} inactivation (Fig. 3A; Table 1, compare control no Cd$^{2+}$ with control 200 μM Cd$^{2+}$). In addition, the H$^+$-induced right shift was less in the presence of Cd$^{2+}$ (Fig. 3A), as also observed in rat ventricular myocytes (50).

In striking contrast to low pH$_o$, intracellular acidosis had no significant effect on the voltage dependence of I_{to} inactivation with or without Cd$^{2+}$ in the bathing solution (Fig. 3B; Table 1).

Table 1. Effect of acidosis and Cd$^{2+}$ on I_{to} steady-state inactivation parameters

<table>
<thead>
<tr>
<th></th>
<th>200 mM Cd$^{2+}$</th>
<th>No Cd$^{2+}$</th>
<th>No Na$^+$, No Cd$^{2+}$</th>
<th>Extracellular Acidosis</th>
<th>Intracellular Acidosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 4)</td>
<td>(n = 5)</td>
<td></td>
<td>(n = 4)</td>
<td>(n = 4)</td>
</tr>
<tr>
<td>Control $V_{1/2}$ mV</td>
<td>-34.6 ± 1.8</td>
<td>-34.3 ± 1.8</td>
<td>-44.4 ± 1.6</td>
<td>-38.6 ± 2.1</td>
<td>-43.5 ± 0.4</td>
</tr>
<tr>
<td>Acidosis $V_{1/2}$ mV</td>
<td>$-28.7 \pm 1.6^{**}$</td>
<td>-34.4 ± 2.4</td>
<td>$-34.5 \pm 2.5^{**}$</td>
<td>-38.2 ± 1.6</td>
<td>$-29.2 \pm 1.4^{**}$</td>
</tr>
<tr>
<td>Control slope k</td>
<td>$5.4 \pm 0.3^{**}$</td>
<td>5.7 ± 0.3</td>
<td>5.6 ± 0.7</td>
<td>4.4 ± 0.2</td>
<td>10.3 ± 0.5</td>
</tr>
<tr>
<td>Acidosis slope k</td>
<td>5.6 ± 0.2</td>
<td>7.1 ± 0.4</td>
<td>5.1 ± 0.4</td>
<td>5.3 ± 0.5</td>
<td>$8.8 \pm 0.4^{*}$</td>
</tr>
</tbody>
</table>

Values are mean ± SE half-maximal inactivation potential ($V_{1/2}$) and k determined from best fits of Boltzmann functions. I_{to}, transient outward current. *P < 0.05, **P < 0.01 vs. control, paired.
This indicates that Cd\(^{2+}\) can be used to block \(I_{Ca,L}\) in order to study the effects of changes in pH\(_i\) on the steady-state gating properties of \(I_{to}\). Importantly, it also suggests that low pH\(_i\) does not affect steady-state inactivation of \(I_{to}\). This lack of effect has been reported for rat ventricular myocytes measured at room temperature (58, 59). However, pipette acid loading was used in that study to induce intracellular acidosis without measuring pH\(_i\), which our results demonstrate (Fig. 1, C and D) is not a reliable method for inducing quantitative changes in pH\(_i\).

Influence of Voltage Clamp Prestep and Cd\(^{2+}\) on Response of \(I_{to}\) Activation to Acidosis

It is necessary to block the contaminating effects of \(I_{Ca,L}\) and \(I_{to}\) when assessing the response of \(I_{to}\) activation to acidosis. \(I_{Ca,L}\) can be blocked with Cd\(^{2+}\), and \(I_{to}\) is readily inactivated by applying a 40-ms prestep from −80 mV to −40 mV. Here we assess the use of these two approaches for studying the effects of acidosis on \(I_{to}\) activation.

Low pH\(_o\). The action of both low pH\(_o\) and external Cd\(^{2+}\) to right-shift \(I_{to}\) inactivation makes it difficult to accurately assess the voltage dependence of \(I_{to}\) activation during extracellular acidosis with Cd\(^{2+}\) present. To avoid using Cd\(^{2+}\), we examined the effect of low pH\(_o\) on \(I_{to}\) activation in Epi myocytes clamped to +60 mV, which, as noted above, is near the peak of the AP and is a voltage at which \(I_{Ca,L}\) is negligible (41). To assess the effects of a prestep on \(I_{to}\) activation, we used sodium-free solutions to block \(I_{Na}\). Figure 4A shows that extracellular acidosis had no effect on \(I_{to}\) in the absence of external sodium, external Cd\(^{2+}\), and a prestep. In contrast, when the prestep was included \(I_{to}\) increased during low pH\(_o\) (Fig. 4B), presumably because of increased channel availability at −40 mV (Fig. 3A). The results are summarized in Fig. 4C. Thus inclusion of even a brief prestep will introduce errors in the measurement of \(I_{to}\) activation during extracellular acidosis.

Most importantly, these results suggest that extracellular acidosis does not significantly affect \(I_{to}\) in rabbit epicardial ventricular APs when they are initiated from normal resting potentials and have normal overshoots. In most subsequent experiments we focused on intracellular acidosis.

Low pH\(_i\). In the next series of experiments we examined the effect of Cd\(^{2+}\) (200 μM) and the 40-ms prestep to −40 mV on \(I_{to}\) activation in Epi myocytes during intracellular acidosis (Fig. 5). As in Fig. 4, the cells were clamped from a holding potential of −80 mV to +60 mV to minimize \(I_{Ca,L}\). Intracellular acidosis markedly reduced \(I_{to}\) in each of the four conditions: Na\(^+\) plus Cd\(^{2+}\) (Fig. 5Aa); Na\(^+\), no Cd\(^{2+}\) (Fig. 5Ab); no Na\(^+\), no Cd\(^{2+}\) (Fig. 5Ac); and no Na\(^+\), no Cd\(^{2+}\), and no prestep (Fig. 5Ad).

The results are summarized in Fig. 5B and show that neither the presence of Cd\(^{2+}\) nor the prestep significantly affected the action of low pH\(_i\) to reduce \(I_{to}\).

Effect of Intracellular Acidosis on \(I_{to}\) Activation and Kinetics of Inactivation

On the basis of the results in Fig. 5, we further examined the voltage dependence of \(I_{to}\) activation in Epi myocytes during intracellular acidosis, using a prestep with both Cd\(^{2+}\) (200 μM) and normal sodium in the bathing solutions (Fig. 6). As shown in the example signals in Fig. 6A and summarized in Fig. 6B, intracellular acidosis (pH\(_o\) 7.4, pH\(_i\) 6.75) reduced \(I_{to}\) by ∼50% at nearly all voltages between −40 mV and +60 mV. The percent reduction in \(I_{to}\) at +40 mV with CL = 5 s (−56.2 ± 3.1%) was not significantly different from that at CL = 1 s (−61.1 ± 3.8%; n = 5, paired).

Figure 6C summarizes the effects of intracellular acidosis on both steady-state activation and inactivation. Low pH\(_i\) did not significantly change the \(V_{1/2}\) of activation (11.3 ± 1.5 mV for control vs. 11.4 ± 1.9 mV for acidosis), while the slope was significantly decreased from −19.7 ± 0.8 mV in control to −15.3 ± 0.8 mV (n = 9, P < 0.01 paired). Steady-state inactivation was also unaffected by intracellular acidosis (with Cd\(^{2+}\), same results shown Fig. 3B).

The quantitative relationship between pH\(_i\) (pH\(_o\) 7.4) and epicardial \(I_{to}\) at +50 mV is summarized in Fig. 6D and shows that \(I_{to}\) was inhibited by low pH\(_i\) with an apparent pK of 6.92.

Figure 6E summarizes the voltage dependence of the fast (τ\(_f\)) and slow (τ\(_s\)) time constants of \(I_{to}\) inactivation from +40 mV to +60 mV (CL = 5 s). Low pH\(_i\) had no significant effect on τ\(_s\) but speeded τ\(_f\) at all voltages. Similarly, when the CL was maintained at 2 s, low pH\(_i\) had no significant effect on τ\(_f\) but reduced τ\(_f\) from 10.4 ± 0.5 ms to 6.3 ± 0.6 ms at +50 mV (n = 4, P < 0.01, paired).

Fig. 4. Effect of a voltage clamp prestep on the response of \(I_{to}\) activation to extracellular acidosis (pH\(_o\) 6.5) in Epi myocytes. A: example experiment showing that, without a prestep to −40 mV, low pH\(_i\) has no effect on \(I_{to}\) activated by a voltage clamp step from −80 mV to +60 mV. B: example experiment (same cell as A) showing that low pH\(_i\) increased \(I_{to}\) when a 40-ms-duration prestep from −80 mV to −40 mV was included. C: summary of the results, expressed as % change in \(I_{to}\) relative to control with and without the prestep (n = 4). All experiments in this figure were performed in sodium- and Cd\(^{2+}\)-free solution. Pacing CL = 5 s. **P < 0.01 paired, vs. without prestep.
Effect of Acidosis on Recovery from Inactivation

The time course of recovery from inactivation in Epi myocytes was studied with a standard two-pulse protocol (Fig. 7). The low-pH_i experiments were performed in sodium-free solution without a prestep. The recovery from inactivation of I_{to} in myocytes from control and both types of acidosis was best fit by a single-exponential function. The recovery time constant was unaffected by low pH_i but slowed by low pH_e.

Effect of Intracellular Acidosis on I_{to} During AP Clamps

To determine the effects of low pH_i on Epi I_{to} under more physiological conditions than with rectangular clamp steps, we also conducted AP clamp experiments (Fig. 8). Clamps were applied to Epi myocytes at CLs of 2 and 5 s since I_{to} and phase 1 repolarization in rabbit ventricular myocytes are affected by pacing rate (17, 20). The templates used for the control and acidosis AP clamps were representative of epicardial APs recorded at both rates. Figure 8A illustrates the inhibitory effect of low pH_i on I_{to} elicited by AP clamps (CL = 5 s). The peak amplitude of I_{to} was significantly reduced at both pacing rates (Fig. 8B), and there was no significant difference in the percent change relative to control between the two rates (unpaired). These results demonstrate the striking action of internal protons to inhibit I_{to} during APs.

Effect of Acidosis on Human Kv4.3 and Kv1.4 Expressed in HEK 293T Cells

On the basis of the voltage-dependent kinetics of recovery from inactivation and the time course of inactivation, transient outward current can be classified as fast (I_{tof}) and slow (I_{tos}). I_{tof} shows rapid recovery (i.e., recovery time constants on the order of 10 to hundreds of milliseconds), and I_{tos} shows slow recovery (i.e., on a timescale of seconds) (36). Evidence indicates that the pore-forming domain of the channel underlying I_{tof} is formed by a combination of Kv4.2 and/or Kv4.3 subunits, while Kv1.4 is the molecular component underlying I_{tos} (32, 34, 36). In addition, a variety of regulatory subunits have major effects on the properties of Kv1.4, Kv4.2, and Kv4.3, including channel kinetics and expression (32, 36).

Although the exact molecular basis of I_{to} in rabbit ventricle is unresolved, expression of mRNA and/or protein of Kv4.2, Kv4.3, and Kv1.4 has been reported (34, 39, 54). To help identify which channel mediates the response of rabbit I_{to} to low pH_i, we examined the effects of intracellular acidosis on hKv4.3 and hKv1.4 channels expressed in HEK 293T cells (Fig. 9). The bathing solutions contained normal sodium and no Cd²⁺ and no prestep was required to block sodium current. As shown in Fig. 9A, exposure to 40 mM acetate for 1 min (pH_i 7.4, 30 μM cariporide) rapidly reduced the effects of acidosis on I_{to}.
pH, from a control value of 7.26 ± 0.01 to 6.70 ± 0.04 (n = 4), which is comparable to that in ventricular myocytes bathed in 80 mM acetate (Fig. 1D). This difference in response to acetate (40 mM vs. 80 mM) most likely reflects a lower intrinsic buffering power in HEK cells. Low pH decreased hKv4.3 current at nearly all voltages but had no significant effect on the I-V relationship of hKv1.4 (Fig. 9B). In contrast to the effects of low pH, extracellular acidosis had no significant effect on the I-V curve of hKv4.3 over the voltage range of -40 mV to +60 mV (n = 3, data not shown).

The kinetics of inactivation of both hKv4.3 and hKv1.4 were accelerated by intracellular acidosis. Thus for Kv4.3 inactivation, two of the four cells were best fit by a single exponential and yielded a \(\tau_{\text{control}} = 163 \pm 3 \) ms and \(\tau_{\text{acidosis}} = 110 \pm 10 \) ms. The same effect also occurred in the two cells best fit by a double exponential (\(\tau_{\text{fast,control}} = 18 \pm 4 \) ms, \(\tau_{\text{fast,acidosis}} = 11 \pm 3 \) ms; \(\tau_{\text{slow,control}} = 134 \pm 12 \) ms, \(\tau_{\text{slow,acidosis}} = 124 \pm 10 \) ms; +60 mV). The time course of hKv1.4 inactivation at +60 mV was best fit by a single exponential and yielded a \(\tau_{\text{control}} = 108 \pm 25 \) ms and \(\tau_{\text{acidosis}} = 76 \pm 17 \) ms (n = 4, P < 0.05, paired).

Taken together, the results in Fig. 9 suggest that the inhibition of \(I_n \) by intracellular acidosis in rabbit ventricular myocytes is mediated, in part, by blockade of Kv4.3 current.

Effect of Intracellular Acidosis on AP and \(I_n \) in Papillary Muscle Myocytes

Rabbit ventricular myocytes display marked regional differences in \(I_n \) density, with Epi cells having the highest and PM cells the lowest (17). This current gradient has large effects on AP repolarization in the intact heart. Given this spatial heterogeneity, it was of interest to also study the response of PM myocytes to intracellular acidosis.

Intracellular acidosis had little effect on phase 1 repolarization in PM cells, and the prolongation of APD was much less than in
Epi myocytes (Fig. 10, A and B). Figure 10C demonstrates that under control conditions current density in PM myocytes was approximately half that of Epi cells, in accord with previous work (17). During intracellular acidosis current was reduced by 50% at all voltages in PM cells (Fig. 10, C and D). These results suggest that regional differences in current density make a significant contribution to the differential response of AP repolarization to low pHi in Epi and PM myocytes.

Modulation of I\textsubscript{Ca,L} by pHi-Induced Changes in AP Waveform

The effects of intracellular acidosis on AP repolarization in Epi myocytes are much more prominent than those in PM cells (compare Fig. 2B to Fig. 10A). Epi cells show a marked slowing of phase 1, loss of the notch, and much greater AP prolongation (Fig. 10Bb). Since phase 1, the notch, and APD have been shown to modulate I\textsubscript{Ca,L}, this could have significant effects on calcium handling (42, 43). In this series of experiments we sought to determine how I\textsubscript{Ca,L} is affected by pHi-induced changes in AP repolarization in Epi and PM myocytes, using AP voltage clamps. Only male rabbits were used for these experiments since transmural differences in peak I\textsubscript{Ca,L} density have been reported for female rabbits (37). To confirm the absence of a transmural gradient we measured I\textsubscript{Ca,L} density in both cell types under control conditions (no acidosis) with a conventional rectangular voltage-clamp protocol. As shown in Fig. 11A, the I-V curves for I\textsubscript{Ca,L} were virtually identical in the two cell types.

For AP voltage-clamp experiments both the control and acidosis templates were applied in the control bathing solution (K+ replaced with Cs+) with the normal pipette filling solution for I\textsubscript{Ca,L} measurements (Cs+, BAPTA). This approach allowed us to determine how pHi-induced changes in AP repolarization per se affect I\textsubscript{Ca,L} without the complicating effects of intracellular acidosis.

As illustrated in Fig. 11, B–E, application of the acidosis template decreased the initial peak value of I\textsubscript{Ca,L} and prolonged its duration, with the greatest changes occurring in Epi cells. Despite the fall in peak I\textsubscript{Ca,L} (Fig. 11C), net Ca2+ influx via I\textsubscript{Ca,L} increased in both cell types, with the greatest increase occurring in Epi cells (Fig. 11D). The changes in peak I\textsubscript{Ca,L} and net Ca2+ influx, expressed as percentage, are summarized in Fig. 11E.

These results demonstrate that the action of low pHi to slow phase 1 repolarization and prolong APD significantly alters I\textsubscript{Ca,L} and net Ca2+ influx via I\textsubscript{Ca,L}, with the greatest changes...
occurring in Epi myocytes. Thus internal H⁺ ions can have significant indirect effects on voltage-dependent \(I_{Ca,L}\) mediated, in part, by pHi-induced changes in \(I_{to}\) that alter the time course of repolarization.

Modulation of \(Ca^+\) by pH\(_i\)-Induced Changes in AP Waveform

To determine whether \(Ca^+\)Ts elicited by APs are affected by pH\(_i\)-induced slowing of phase 1 repolarization and APD prolongation, we performed the AP clamp experiments shown in Fig. 12. All studies were performed in control bathing solution with the same AP templates as those shown in Fig. 11 and the normal pipette filling solution (no Cs\(^+\), no BAPTA). The Epi templates were applied to Epi myocytes, and the PM templates were applied to PM myocytes. Small but significant increases in the amplitude and rate of rise of the \(Ca^+\)T occurred in Epi but not PM myocytes (Fig. 12, Ba and Bb). The duration of the \(Ca^+\)T (CaTD\(_{50}\)) was increased by the intracellular acidosis template in both cell types (Fig. 12, A and Bc).

We also performed separate AP clamp experiments in which \(I_{Ca,L}\) and \(Ca^+\)T were simultaneously recorded in Epi and PM myocytes. The AP templates were the same as those shown in Fig. 12A and were applied to their respective cell types. Potassium in the bathing solution was replaced with Cs\(^+\), and the pipette filling solution was the normal solution used for \(I_{Ca,L}\) measurements, except that it contained no BAPTA. The results are summarized in Table 2 and show that the intracellular acidosis template decreased peak \(I_{Ca,L}\) by \(-31.0 \pm 3.9\%\) and \(-7.8 \pm 1.7\%\) in Epi (\(n = 5\)) and PM (\(n = 5\)) myocytes, respectively. These results are very similar to those obtained with AP clamps during BAPTA dialysis (Fig. 11C). In addition, the acidosis template in Epi but not PM cells increased both the amplitude and rate of rise of the \(Ca^+\)T. This resulted in a significant increase in E-C coupling gain in Epi but not PM myocytes, calculated as maximum rate of rise of the \(Ca^+\)T divided by peak \(I_{Ca,L}\).

Collectively, these results demonstrate that the striking changes in AP repolarization induced by intracellular acidosis have a significant modulating influence on ventricular calcium handling that is especially evident in cells with a prominent \(I_{to}\).

DISCUSSION

Changes in myocardial pH have multiple effects on electrical activity and \(Ca^{2+}\) signaling (14, 33). This sensitivity accounts in part for the arrhythmias and depression of ventric-
ular function that occur during myocardial ischemia, a condition associated with a fall in both pH and pHo (3, 19). Here we examined the response of rabbit ventricular Ito to acute extracellular and intracellular acidosis, especially intracellular, and determined the resulting effects on AP repolarization. We also studied the indirect action of these repolarization changes on I_{Ca,L} and CaTs. In contrast to previous reports of pH effects on ventricular Ito (24, 50, 58, 59), our experiments were performed at physiological temperature with a myocyte preparation with a more humanlike AP than that of rat.

We demonstrate that Ito is rapidly and markedly reduced by intracellular acidosis (Figs. 6, 8, and 10). This occurred in cells with both high (Epi) and low (PM) Ito densities. In both cell types low pH reduced peak Ito over a large voltage range (−20 mV to +60 mV), resulting in an ~50% fall in current density when pH1 is reduced from 7.22 and 6.75. The apparent pK of this relationship in Epi cells was 6.92, demonstrating the high H+ sensitivity of Ito over the physiological range of pH1 values.

Interestingly, this reduction in peak current was not accompanied by shifts in either steady-state inactivation or activation curves. This contrasts with the action of external H+ to induce right shifts (toward less negative potentials) in these parameters as reported here for rabbit ventricular myocytes (Fig. 3A) and previously for rat and human ventricular myocytes (50). These shifts presumably result from H+ screening of and/or binding to anionic sites such as carboxylic or amine/imidazole residues on the external sarcolemma and/or the channel itself. We have recently shown that both extra- and intracellular acidosis elicit large right and left shifts, respectively, in steady-state activation and inactivation of I_{Ca,L} in rabbit ventricular myocytes (41). The absence of shifts in Ito gating parameters during intracellular acidosis cannot be explained by the present study, but perhaps it reflects a low density of intracellular anionic sites on the channel itself.

Previous studies of rat ventricular myocytes also reported that intracellular acidosis reduced peak Ito without altering steady-state activation and inactivation (58, 59). However, those experiments were performed with pipette acid loading, without measuring pH1, and in some experiments without the same cell serving as its own control. In addition, the origin of

Fig. 10. Effects of intracellular acidosis on AP and Ito in PM myocytes. A: example experiment showing the effect of intracellular acidosis (80.0 mM acetate) to prolong APD with little effect on phase 1 repolarization. CL = 2 s. Inset: expanded view of phase 1 repolarization. B, a: summarized APD_{90} results for low pH1 in PM myocytes at CL = 2 s (n = 8; **P < 0.01, paired). b: % change in APD_{90} relative to control after 2 min of low pH1 in Epi (n = 11; same results as Fig. 2D) and PM (n = 8; **P < 0.01, unpaired) myocytes. C: low pH1 in PM myocytes (n = 8) depressed Ito at nearly all voltages. CL = 5 s. **P < 0.01, paired. Control I-V curve from Epi myocytes shows same data as Fig. 6B. D: summary of results for Ito in Epi (n = 9) and PM (n = 8) myocytes at +50 mV and % change relative to control. CL = 5 s. **P < 0.01, unpaired, comparison of control Ito amplitude in Epi and PM myocytes; **P < 0.01, paired, control vs. acidosis.
the cells was not specified, e.g., epicardial or endocardial. All of these issues were avoided in the present work.

The absence of voltage shifts in \(\text{I}_{\text{to}} \) to gating, accompanied by a large reduction in peak current during low pH, strongly suggests a direct action of internal protons to reduce channel permeability, perhaps by titrating binding sites within the channel pore. This effect has a rapid onset and thus is unlikely to reflect a decrease in channel density.

We found no significant effect of extracellular acidosis on recovery from inactivation (Fig. 7A). In contrast, we did observe a small slowing of \(\text{I}_{\text{to}} \) recovery from inactivation during intracellular acidosis (Fig. 7B). However, this did not significantly affect the action of intracellular acidosis to reduce peak \(\text{I}_{\text{to}} \) during AP or rectangular voltage clamps elicited at CLs of 5, 2, or 1 s. Thus acidosis-induced slowing of recovery from inactivation does not appear to contribute significantly to the inhibitory effects of low pH on \(\text{I}_{\text{to}} \).

Response of Kv4.3 and 4.1 Currents to Intracellular Acidosis

Previous studies using heterologous expression systems reported that extracellular acidosis inhibited both human Kv4.3 current (49) and Kv1.4 from rat and ferret (10). In contrast, human Kv1.4 current is reported to be unaffected by extracellular acidosis but inhibited by intracellular acidosis (35). Kv1.4 and Kv4.3 are both expressed in rabbit ventricle (34, 39, 54).

To help identify the molecular basis for the inhibitory action of intracellular acidosis on rabbit \(\text{I}_{\text{to}} \), we examined the effects of low pH on human Kv4.3 and Kv1.4 channels expressed in HEK 293T cells (Fig. 9). Kv1.4 current was unresponsive to a fall in pH from 7.3 to 6.7 (pHo 7.4), while Kv4.3 current magnitude was significantly reduced over the voltage range of \(-70\) to \(-10\) mV (Fig. 9), suggesting that Kv4.3 mediates, in part, the sensitivity of rabbit ventricular \(\text{I}_{\text{to}} \) to pH. However, we cannot rule out the possibility that differences in regulatory subunits and temperature (37°C vs. 23°C) between the native channels and those expressed in HEK cells may also affect the pH sensitivity of these currents.

Relationship Between Action Potential Repolarization and \(\text{I}_{\text{to}} \) Inhibition by low pH

Consistent with the higher \(\text{I}_{\text{to}} \) density in Epi myocytes, the repolarization effects of intracellular acidosis to reduce \(\text{I}_{\text{to}} \) were most evident in this cell type, with marked slowing of phase 1, attenuation of the notch, and elevation of the plateau (compare Fig. 2B and Fig. 10B). The role of \(\text{I}_{\text{to}} \) inhibition in overall prolongation of APD in both cell types is less clear, but it seems likely that it contributed in part. Regardless of the detailed mechanism for the increased APD during low pH, the magnitude of APD prolongation in Epi cells was approximately twice that in PM cells.

Fig. 11. Response of L-type calcium current \((\text{I}_{\text{Ca,L}}) \) in Epi and PM myocytes to changes in AP repolarization induced by intracellular acidosis (80.0 mM acetate).

A: \(\text{I}_{\text{Ca,L}} \) in control bathing solution was virtually the same in Epi (\(n = 11 \)) and PM (\(n = 9 \)) cells. B: a: example of an AP clamp experiment (Epi myocyte) showing the action of the intracellular acidosis template to decrease peak \(\text{I}_{\text{Ca,L}} \) and prolong its duration. b: Example of an AP clamp experiment (PM myocyte) showing the action of the intracellular acidosis template to prolong \(\text{I}_{\text{Ca,L}} \) duration with little effect on peak current. C: summary of results for peak \(\text{I}_{\text{Ca,L}} \) during AP clamps (Epi \(n = 11 \), PM \(n = 9 \); **\(P < 0.01 \), paired, control vs. acidosis template). D: summary of results for net Ca\(^{2+}\) influx via \(\text{I}_{\text{Ca,L}} \) during AP clamps. Same cells as in C. E: results in C and D expressed as % change. **\(P < 0.01 \), unpaired, Epi vs. PM. CL = 2 s was used for all experiments shown in this figure.
Although extracellular acidosis induced a right shift in steady-state inactivation (Fig. 3A), it did not affect the magnitude of \(I_{to} \) at +60 mV, a voltage near the peak of the AP, when activated from \(V_m \) near the normal diastolic value (Fig. 4A). In addition, both extra- and intracellular acidosis had only small effects on diastolic \(V_m \) (Fig. 2). Thus it seems unlikely that \(I_{to} \) is involved in the pHo-induced shortening of APD we observed in this preparation, a conclusion supported by our previous computer simulations (41).

Table 2. Effect of AP repolarization on simultaneously measured \(I_{Ca,L} \) and CaTs

<table>
<thead>
<tr>
<th></th>
<th>Epi Template (n = 5)</th>
<th>PM Template (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Intracellular acidity</td>
</tr>
<tr>
<td>Initial peak (I_{Ca,L}), pA/pF</td>
<td>−7.64 ± 0.59</td>
<td>−5.35 ± 0.70**</td>
</tr>
<tr>
<td>Net (Ca^{2+}) influx via (I_{Ca,L}), pC/pF</td>
<td>0.31 ± 0.03</td>
<td>0.40 ± 0.05*</td>
</tr>
<tr>
<td>CaT amplitude (F/F_0)</td>
<td>1.95 ± 0.23</td>
<td>2.09 ± 0.23**</td>
</tr>
<tr>
<td>Rate of rise, F/F_0/s</td>
<td>51.8 ± 16.4</td>
<td>65.2 ± 14.4*</td>
</tr>
<tr>
<td>E-C coupling gain, (F/F_0/s)/(pA/pF)</td>
<td>7.36 ± 2.66</td>
<td>13.8 ± 4.22*</td>
</tr>
</tbody>
</table>

All values are means ± SE. All experiments were performed in the absence of acidosis with appropriate action potential (AP) templates for control and intracellular acidosis. \(I_{Ca,L} \), L-type calcium current; CaT, calcium transient; Epi, epicardial; PM, papillary muscle; F/F_0, ratio of fluorescence during CaT divided by diastolic fluorescence; E-C, excitation-contraction. *\(P < 0.05 \), **\(P < 0.01 \) vs. control, paired; **\(P < 0.01 \) vs. control with Epi template, unpaired.
Modulation of Calcium Handling by Intracellular Acidosis During Action Potentials

Our AP clamp experiments, performed with normal pH$_{i}$ and pH$_{r}$, revealed that the changes in AP configuration induced by intracellular acidosis have significant effects on peak I$_{Ca,L}$, net Ca$^{2+}$ influx via I$_{Ca,L}$, and the CaT (Fig. 11, Fig. 12, Table 2). These effects appear to be mediated, in part, by pH$_{i}$-induced changes in I$_{to}$ and are more prominent in Epi than PM myocytes. Several earlier studies reported that changes in phase 1 repolarization significantly affect I$_{Ca,L}$ and CaTs during APs (6, 11, 43, 44). However, to our knowledge, this is the first demonstration that changes in ventricular repolarization induced by low pH$_{i}$ have significant indirect effects on calcium handling.

Our finding of a reduction in peak I$_{Ca,L}$, resulting from I$_{to}$ inhibition (Fig. 11), is consistent with canine myocyte simulations (21) and rat myocyte experiments (11, 43, 44) and is likely mediated by the reduced voltage driving force acting on Ca$^{2+}$ current. Epi myocytes displayed the greatest change in peak I$_{Ca,L}$, reflecting their higher I$_{to}$ density and thus more pronounced slowing of phase 1. Despite the drop in peak I$_{Ca,L}$, net Ca$^{2+}$ influx via I$_{Ca,L}$ increased in both Epi and PM cells, presumably because of the prolonged APs. The largest increase in Ca$^{2+}$ influx occurred in Epi cells, reflecting the greater AP lengthening (Fig. 11D).

The prolongation of the AP also caused CaT duration to increase in both cell types (Fig. 12Bc). However, the amplitude and rate of rise of the CaT as well as E-C coupling gain also increased (21) and rat myocyte experiments (11, 43, 44) and is likely mediated by the reduced voltage driving force acting on Ca$^{2+}$ current. Epi myocytes displayed the greatest change in peak I$_{Ca,L}$, reflecting their higher I$_{to}$ density and thus more pronounced slowing of phase 1. Despite the drop in peak I$_{Ca,L}$, net Ca$^{2+}$ influx via I$_{Ca,L}$ increased in both Epi and PM cells, presumably because of the prolonged APs. The largest increase in Ca$^{2+}$ influx occurred in Epi cells, reflecting the greater AP lengthening (Fig. 11D).

The prolongation of the AP also caused CaT duration to increase in both cell types (Fig. 12Bc). However, the amplitude and rate of rise of the CaT as well as E-C coupling gain also increased (21) and rat myocyte experiments (11, 43, 44) and is likely mediated by the reduced voltage driving force acting on Ca$^{2+}$ current. Epi myocytes displayed the greatest change in peak I$_{Ca,L}$, reflecting their higher I$_{to}$ density and thus more pronounced slowing of phase 1. Despite the drop in peak I$_{Ca,L}$, net Ca$^{2+}$ influx via I$_{Ca,L}$ increased in both Epi and PM cells, presumably because of the prolonged APs. The largest increase in Ca$^{2+}$ influx occurred in Epi cells, reflecting the greater AP lengthening (Fig. 11D).

In contrast to our results, both rabbit and rat ventricular myocytes displayed reduced CaT amplitude when subjected to AP clamps using human AP templates of heart failure in which the notch was reduced and APD increased (11). The authors proposed that the smaller CaT amplitude resulted from a reduction in peak I$_{Ca,L}$ that decreased synchromy of SR Ca$^{2+}$ release. We cannot rule out dysynchronous Ca$^{2+}$ release in our experiments. However, it seems possible that its effect on CaT amplitude was mitigated by enhanced SR Ca$^{2+}$ content mediated by the much greater AP prolongation during low pH$_{i}$ (~88%; Fig. 2D) compared with that of the heart failure AP templates (~25%) used in the Cooper et al. study (11).

In summary, we have shown that, in contrast to low pH$_{o}$, intracellular acidosis has a marked inhibitory effect on rabbit ventricular I$_{to}$, perhaps mediated by Kv4.3. The repolarization effects of this inhibition were much greater in Epi than PM myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. In addition, the low pH$_{i}$-induced prolongation of APD was greatest in Epi myocytes. In the intact heart this may have the undesirable effect of promoting transmural heterogeneity of repolarization under pathological conditions in which pH$_{i}$ falls. Increased dispersion of repolarization has been shown to facilitate the occurrence of reentrant arrhythmias (26). By altering the trajectory of the AP waveform, low pH$_{i}$ modulates calcium handling as reflected in a reduction in initial peak I$_{Ca,L}$, increased net Ca$^{2+}$ influx via I$_{Ca,L}$, and increased CaT amplitude and duration. Thus, in addition to the direct action of [H$^{+}$], on I$_{Ca,L}$ (41), SR Ca$^{2+}$ release and uptake (28), NCX (15), and diastolic Ca$^{2+}$ (41), low pH$_{i}$ also exerts a significant indirect effect on E-C coupling. This illustrates the striking diversity of mechanisms that contribute to the overall response of ventricular myocytes to acute increases in [H$^{+}$].

ACKNOWLEDGMENTS

We thank Dr. Juergen Puenter of Sanofi-Aventis, Frankfurt, Germany for generously providing cariporide for these experiments. We gratefully acknowledge the useful advice of Dr. Michael Sanguinetti.

GRANTS

This work was supported by National Heart, Lung, and Blood Institute Grant R37 HL-042873 and the Nora Eccles Treadwell Foundation (to K. W. Spitzer) and an American Heart Association Postdoctoral Fellowship (to V. Garg).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: N.S., V.G., and K.W.S. conception and design of experiments; N.S., V.G., and K.W.S. performance of experiments; N.S., V.G., and K.W.S. analysis of data; N.S., V.G., and K.W.S. interpretation of results of experiments; N.S. and K.W.S. preparation of figures; N.S. and K.W.S. draft manuscript; N.S., V.G., and K.W.S. edited and revised manuscript; N.S., V.G., and K.W.S. approved final version of manuscript.

REFERENCES

25. Irisawa H, Sato R.

11. 33. Orchard CH, Kentish JC.

17. Gettes LS, Casio WE.

15. Fedida D, Giles WR.

13. Cordeiro JM, Greene L, Heilmann C, Antzelevitch D, Antzelevitch C.

30. Kurachi Y.

34. Farrell SR, Ross JL, Howlett SE.

20. 2094.

12. Fedida D, Giles WR.

19. Fedida D, Giles WR, Breit S, Campbell TC.

16. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

10. Cordeiro JM, Greenwood AL, Antzelevitch C.

9. Gettes LS, Casio WE, Campbell WP.

8. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

7. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

6. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

5. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

4. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

3. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

2. Fedida D, Giles WR, Goodwin RF, Berliner MA, Breit S.

