Spontaneous activity in peripheral diaphragmatic lymphatic loops

Andrea Moriondo, Eleonora Solari, Cristiana Marcozzi, and Daniela Negrini

Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy

Submitted 20 May 2013; accepted in final form 23 July 2013

The diaphragmatic lymphatic network is a complex vascular system arranged both over the pleural and peritoneal sides of the diaphragm (3, 18). Both linear lymphatics and vessels are arranged in complex loops that run parallel to the diaphragmatic surface, forming a superficial submesothelial network. Transverse ducts depart from these vessels and run perpendicular to the diaphragmatic surface through the skeletal muscle fibers to reach larger collecting lymphatics, located in the center of the diaphragmatic thickness and supposed to propel the lymph away from the diaphragm (7). Throughout the body tissues, lymph formation and propulsion have been found to rely on two different mechanisms: one intrinsic, due to the rhythmic spontaneous contraction of the smooth muscle cells of the lymphatic vessel wall (12), and the other extrinsic, associated with tissue displacements and depending on the mechanical stresses arising in the tissue surrounding the lymphatics (15). Diaphragmatic lymphatic function has been extensively studied by means of fluorescence in vivo imaging and micropuncture technique in loops and linear vessels that are located in the muscular region just below the mesothelial layer. In this superficial network of the diaphragm, both cardiac and respiratory activities support the extrinsic mechanism (8, 11, 17), while no significant evidence of the intrinsic pumping mechanism has been observed. Indeed, the submesothelial lymphatic vessels studied so far are initial lymphatics, since they are devoid of any muscular layer in their walls; in these vessels, the cyclic contractions/relaxations of the diaphragm during respiratory activity and local tissue displacements due to the propagation of cardiothoracic pressure waves provide an effective extrinsic pumping mechanism apparently able to drain fluid from the pleural and peritoneal cavity and from the surrounding muscular interstitium (17). In these previous studies, lymphatics located at the conjunction between the diaphragm and the abdominal wall have never been investigated in deep, given their rather hidden, extreme peripheral location just beneath the costal margin facing the apposition zone.

In the present work, we show for the first time that, at variance with what was observed for vessels located in the diaphragmatic muscular portion, lymphatic loops at the very far periphery of the diaphragm do possess an intrinsic pumping mechanism. Not only are these vessels capable of spontaneous contraction, but their contractile machinery is unevenly distributed within a loop. However, despite the variability of the segmental function, the loops seems to behave as a well-coordinated unit, providing an unidirectional and almost steady lymph flux toward the more central and deep regions of the diaphragmatic lymphatic network.

METHODS

Surgical procedures and in vivo vessel activity recording. Experiments were performed on 11 adult Wistar rats (mean body weight 327 ± 33 g) anesthetized with an intraperitoneal injection of 75 mg/kg body wt ketamine and 0.5 mg/kg body wt medetomidine cocktail in saline solution. Successive boluses were administered intraperitoneally every 60 min, while continuously checking throughout the experiment the adequate level of anesthesia by means of the absence of the noxious hindpaw reflex. Staining of the diaphragmatic lymphatic was performed in vivo by an intraperitoneal injection of 0.8 ml of 2% FITC-dextran in saline solution (Sigma-Aldrich) plus 10% FITC-fluorescent 0.1 μm microspheres (Invitrogen). Because of their size, FITC-dextrans and microspheres cannot leave the peritoneal cavity directly into the bloodstream, but they do enter the lymphatic stoma of the peritoneal diaphragmatic mesothelium, thus efficiently loading the diaphragmatic lymphatic network. After 60 min from dye injection, the animals were turned supine, tracheotomized, paralyzed with a 0.3 ml bolus of 2 mg/ml pancuronium bromide in saline solution in the jugular vein, and mechanically ventilated (Inspira, Harvard Apparatus) at a tidal volume and frequency set on the basis of the body weight. Then the chest wall was opened, the pleural diaphragmatic surface was exposed, and the superficial diaphragmatic lymphatic network containing the fluorescent dye could be visualized through a stereomicroscope in fluorescence epi-illumination (excitation 490 nm, emission 520 nm). Images of the peripheral diaphragmatic lymphatics, often arranged in loops, were video-recorded over time at 1–20 Hz with a cooled charge-coupled device camera (Orca ER, Hamamatsu).
INTRINSIC PUMPING IN DIAPHRAGMATIC LYMPHATICS

Whole-mount staining and image acquisition. Immediately after the suppression of the animals at the end of experiments, the diaphragmatic tissue surrounding the same recorded vessels was fixed in situ with 4% paraformaldehyde for 10 min, then excised and postfixed with 4% paraformaldehyde for 30 min and washed in PBS three times. Thereafter, specimens were permeabilized with 100% cold methanol and subsequently with 0.5% Triton X-100 and then incubated with blocking solution (1% BSA, 5% goat serum in PBS) for 1 h at room temperature. Overnight incubation with primary mouse anti-α-smooth muscle actin antibody [1:25 Actin Alpha 2 Smooth Muscle Antibody (1A4), Novus Biologicals] at 4°C followed by three washes in PBS and a 1-h incubation with a secondary goat anti-mouse antibody conjugated to Alexa Fluor 647 (1:100 goat anti-mouse IgG2a, Molecular Probes) was performed. Then specimens were rinsed three times in PBS, mounted onto glass coverslips with Fluoroshield (FM6057, Sigma Aldrich), and imaged in their whole thickness with a confocal microscope (TCS SP5, Leica) with a 0.5-μm z-axis steps: images were collected using a ×20 dry objective and 98.33-μm pinhole. The negative controls for the experiments were prepared and analyzed via similar procedures, omitting the incubation with the primary antibody; in addition, aorta specimens were used as positive controls. Negative and positive controls were scanned with the same instrument settings as the specimens for a valid comparison of relative fluorescence intensities.

Data analysis. The diameter of the observed lymphatic vessels was measured over time using “diameter” plug-in of ImageJ software (5). Briefly, SimplePCI proprietary video format was converted into TIFF-based image time-stacks, which were stabilized with built-in ImageJ plug-in. Then, to encompass the whole vessel diameter during the entire time stack, despite residual lateral movements of the vessel, the maximum intensity projection of time stack was used as a template to correctly position the diameter-measuring line perpendicularly to the vessel major axis. The analysis of the vessel diameter changes obtained over time from ImageJ was performed with Clampfit 10.2 (Molecular Devices); statistical analysis was performed using Origin software.

Analysis of the similarity of the vessel diameter over time signals as a function of a time-lag applied to one of them (cross-correlation analysis) was performed using Clampfit software. Confocal microscopy images were analyzed using Image J (National Institutes of Health) and Adobe Photoshop software. Pleural diaphragmatic lymphatic network overviews were obtained in silico by aligning and superimposing consecutive images into a continuous panorama using Adobe Photoshop software. Lymphatics cross sections were obtained using Re-slice function of Image J software on the merged z-stacks.

Data are presented as means ± SE. Difference between means were statistically evaluated with Student’s t-test after data normality distribution check.

RESULTS

In the baseline period, after induction of deep anesthesia and throughout the entire experiments, mean arterial pressure and heart contraction frequency were 122 ± 7 mmHg and 118 ± 9 beats/min, respectively.

In vivo visualization of lymphatic structures and active pumping sites. A typical lymphatic arrangement of a portion of diaphragmatic network, as it appears under epifluorescent illumination when FITC-dextran is injected into the peritoneal cavity, is presented in Fig. 1B. In this low-magnification image, which encompasses almost the entire right hemidiaphragm (as schematically shown in Fig. 1A), it is possible to recognize a network of vessels organized in linear tracts (arrows) connecting loop structures. The latter ones are present both on the medial muscular part of the diaphragm (at the center of the

Fig. 1. A: schematic drawing of the pleural surface of the diaphragm. The squared lines highlight the latero-dorsal region of the right hemidiaphragm from where the in vivo fluorescent image of the diaphragmatic lymphatic network shown in B was taken. B: in vivo image of the diaphragmatic lymphatic network highlighted by an intraperitoneal injection of FITC-dextran. The dotted line highlights the peripheral margin of the diaphragm. Lymphatic loops are preferentially located on the periphery of the diaphragm, while linear vessels emerge from them pointing toward the medial diaphragm surface (left side of the image). The box surrounds contracting sites of the upper loop, whose change in diameter over time can be appreciated in insets a and b, reporting to two different images taken from a 1-Hz frame rate video. a: Loop segment in the diastolic phase. b: Same site as in a in the systolic phase. Scale bar is 1 mm. Insets have the same magnification as the main panel.

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00418.2013 • www.ajpheart.org
image), and at its far periphery toward the outer diaphragmatic margin (dotted line). Unlike what was observed in linear vessel of the medial portion of the network, the most peripheral loops are endowed with sites able to rhythmically change their diameter over time, as appreciable from the still images of insets a and b, taken from a video recorded at 1-Hz frame rate and showing a clear spontaneous reduction of vessel diameter over time.

**Localization of smooth muscle around contracting and not-contracting sites.** To investigate the organization of contractile elements in the wall of the peripheral loop vessels, we performed whole-mount immunostaining experiments against smooth muscle α-actin on the very same loops that had been previously analyzed in vivo. In Fig. 2A, which presents a reconstruction of a whole peripheral loop from confocal images of several adjacent fields, the red and green signals highlight smooth muscle α-actin in the vessel wall and FITC-dextran inside the vessels lumen, respectively. The images clearly show the presence of smooth muscle α-actin in the vessel wall, although its distribution dramatically varies among different sites of the same loop. For example, in the segment illustrated in Fig. 2A, box B', smooth muscle is organized in a dense mesh of fibers which ensheath most of the circumference of the vessel, as clearly visible in the cross-section image show in Fig. 2C, taken at the white line (C') of 2B. The capability of the vessel segment visualized in Fig. 2B to actively contract was documented by the still images shown in D and E, taken from the video recorded from the same site during the “in vivo” experiment, where the reduction of vessel diameter from the diastolic (D) to the systolic (E) phase over a 3-s time frame can be clearly appreciated. In other sites of the same loop...
Table 1. Functional values of the four classes of sites encountered in peripheral lymphatic loop

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>Resting Diameter, μm</th>
<th>Distending Volume, pl</th>
<th>Stroke Volume, pl</th>
<th>Ejection Fraction, %</th>
<th>Frequency, beats/min</th>
<th>Lymph Flux, pl/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneously active</td>
<td>102</td>
<td>162.1 ± 5.6</td>
<td>34.9 ± 3.0</td>
<td>43 ± 2</td>
<td>6.9 ± 0.4</td>
<td>199.3 ± 13.9</td>
<td></td>
</tr>
<tr>
<td>Inert</td>
<td>78</td>
<td>154.4 ± 7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purely passive</td>
<td>9</td>
<td>185.9 ± 32.2</td>
<td>66.7 ± 24.4</td>
<td></td>
<td>2.9 ± 0.5</td>
<td>160.7 ± 50.6</td>
<td></td>
</tr>
<tr>
<td>Stretch activated</td>
<td>8</td>
<td>147.2 ± 13.2</td>
<td>28.7 ± 6.7</td>
<td>64.4 ± 9.7</td>
<td>70 ± 3</td>
<td>152.6 ± 20.5</td>
<td></td>
</tr>
</tbody>
</table>

P value NS

Values are means ± SE; n, no. of lymphatic sites. Values have been calculated as described in the Appendix. Distending volume represents the change in volume above resting volume. NS, nonsignificant.

(3.1A, box C’ and enlarged panel F), smooth muscle α-actin, when present, showed a more sparse distribution with a predominant strip alignment parallel to the major axis of the lymphatic vessel, with the muscular layer surrounding only partially the vessel perimeter (G). In vivo, this site showed no active contractions, as appreciable by the absence of diameter change over time in the still images taken from the previously recorded video (Fig. 2, H and I).

Classification of vessel sites based on their segmental behavior. Through the systematic analysis of diameter changes over time performed at 197 sites from 15 loop structures recorded from 11 rats, it has been possible to identify, in vessel with similar diameter (Table 1) and even within the same loop (Fig. 3), four different types of segmental behavior. 1) In 51.8% of the observed lymphatic sites, active spontaneous contraction occurred at a mean frequency of 6.9 ± 0.4 beats/min (n = 102). In these vessels (spontaneously active, Fig. 3A), the average diastolic diameter (162.1 ± 5.6 μm, n = 102) sharply and significantly (P < 0.01, paired t-test, n = 102) decreased by 74.5 ± 1.2% of the diastolic value in the systolic phase, thereby returning to the precontractile diameter with a slower kinetics. 2) In 39.6% of the lymphatic (inert) segments, the diameter (154.4 ± 7.4 μm, n = 78) never changed over the observation period, extended up to 90 s (Fig. 3B). 3) Approximately 4.5% of the vessel segments displayed a pure passive behavior (passive sites, Fig. 3C). From its baseline value (185.9 ± 32.2 μm, n = 9), vessel diameter periodically (2.9 ± 0.5 beats/min) sharply enlarged to 133.63 ± 7.32% of its resting value, thereby slowly decaying to the baseline diameter. 4) The remaining 4.1% of the lymphatic sites displayed a biphasic behavior (Fig. 3D) at an average rate of 2.5 ± 0.1 beats/min. Starting from a resting value of 147.2 ± 13.2 μm (n = 8), the diameter first enlarged up to 123.8 ± 7.6% of the resting value (P < 0.01, n = 8, paired t-test) and then dropped to 66 ± 1.6% (P < 0.01, n = 8, paired t-test). At variance with what was observed for purely passive sites of Fig. 3C, at this sites a passive enlargement of the vessel triggered an active, stretch-activated response. No significant differences (P = 0.448, one-way ANOVA, 196 degrees of freedom) in resting diameter was encountered among the four populations of lymphatic vessel segments.

Temporal correlation analysis among different sites of the same lymphatic loop. The distribution of the four types of lymphatic segments within a whole lymphatic loop was very variable. When multiple spontaneously active sites were scattered within a sequence of inert sites, the former displayed their typical contractile frequency (∼7 beats/min). Instead, if stretch-activated and purely passive sites were encountered in proximity of spontaneously active sites, they all rhythmically contracted at a lower frequency (∼2–3 beats/min). In the lymphatic network of the most peripheral muscular diaphragm, multiple spontaneously active sites can be encountered in the same loop, as in the example of Fig. 4A, where, as appreciable in 4C, spontaneous contraction were observed at sites 1, 2, and 3, while site 4 was purely passive. Sites 2 and 3 displayed a closely correlated auto-rhythmic activity with a contraction frequency of 3.1 beats/min and a site 2 to 3 time lag of 0.5 s; passive site 4 displayed the same frequency of enlargement, with a site 3 to 4 delay of 0.95 s. The spontaneous contractile frequency (5.4 beats/min) of site 1 was instead completely uncorrelated with the other sites. Nevertheless, all active sites contributed to the ordered flux of lymph in the loop structure, as witnessed by the progressive movement of a fluorescent aggregate inside the vessel lumen (Fig. 4B, arrow). As evident from Fig. 5, B and C, a spontaneous contraction is always the first event observable in a given loop (solid line, trace I).
followed by the stretch-activated segments (dark shaded line, trace 3) and eventually by passive segments (light shaded line, trace 4). The time delay (τ, s) between the diameter change in spontaneously active and stretch-activated or passive segment was, on average, 0.35 ± 0.1 s and 0.54 ± 0.1 s, respectively (n = 4), and was related to the distance (d, μm) between the spontaneously active and the stretch-activated or passive segment, as described by the linear relationship: τ = 0.0002 + 0.063 d, (R² = 0.67, n = 12). To better investigate this phenomenon in loops characterized by multiple spontaneously contractile sites, the mean percent diameter changes were plotted as a function of the corresponding mean contraction frequency. Data could be fitted by a rectangular hyperbola (Fig. 6) of the kind:

\[
y = y_0 + \frac{a \cdot b}{b + x}
\]

Where \(y_0 = 3.94\), \(a = 71.92\), \(b = 2.27\), \(R^2 = 8.84\), \(P < 0.01\).

Being the (xy) product, i.e., the (contractile frequency·Adiameter) = flow index constant in the hyperbolic functions, this result mathematically confirms the visual observation that the average intraluminal flow is nearly constant within a loop, despite spontaneous variable contractile rates at various segmental sites.

Examining the diameter over time signals measured in loops in which at least two spontaneously active sites contracted at the same frequency but with a finite time delay, we performed a cross-correlation analysis to calculate the spreading velocity of the contraction wave along the lymphatic vessel wall. By dividing the distance along the vessel between neighboring contracting sites by the time lag of their contractions, the mean contractile wave spreading velocity was 1.3 ± 0.3 mm/s (n = 5 loops).

**DISCUSSION**

**Spontaneously contracting diaphragmatic lymphatic segments.**

The present study reveals for the first time the coexistence of actively pumping, stretch-dependent pumping, and completely passive sites within the diaphragmatic lymphatic network. The functional difference between various sites, encountered even within the same lymphatic loop, never emerged in the past. Indeed, the greatest majority of the available intraluminal diaphragmatic lymphatic pressure (P_{lymph}) recordings was characterized by pressure swings, which could be directly related to the mechanical impact of the cardiac (17) or respiratory (11) activity on the diaphragmatic tissue and on lymphatic vessels. Being spontaneous P_{lymph} swins extremely rare events (14), we inferred that diaphragmatic lymphatic function was almost exclusively sustained and modulated by tissue movements and by the mechanical properties of the tissue (9, 16). This view was supported by morphological evidences showing that lymphatics located in the submesothelial interstitium on both the pleural and peritoneal sides and among the muscle fibers of the diaphragm essentially lack smooth muscle cells (7). However, P_{lymph} measurements had always been obtained from superficial submesothelial lymphatic vessels, running over the pleural side of the muscular lateral diaphragmatic dome, which is the most easily accessible, both for stereomicroscopic observation and for micropuncture approach. Indeed, submesothelial vessels had been visualized through pleural injections of fluorescent dextrans, which are drained first into the subpleural superficial lymphatic network with a very minor filling of the deeper diaphragmatic lymphatics (10, 17).

In the present work, a different portion of the diaphragmatic lymphatic network, located at the extreme diaphragmatic margin in close proximity with the abdominal wall, has been studied. Lymphatic vessels of this area could be readily and

![Fig. 4. Temporal correlation among functionally different segments of the same lymphatic loop. A: fluorescence image of a FITC-dextran filled lymphatic loop showing a fluorescence aggregate (top left bright object inside the lumen) circulating inside the loop. Sites 1–4 indicate where the corresponding traces of C have been measured. Scale bar 500 μm. B: subsequent still images taken from the video recording, showing the intraluminal progression of the fluorescent aggregate in a counterclockwise direction, as indicated by the arrow. Scale bar 500 μm. C: plots of diameter change over time for sites 1–4 indicated in A. Downward trace deflection indicates reduction in vessel diameter (contraction); upward trace deflection indicates increase in vessel diameter (expansion). Although sites 1–3 are all actively contracting, they display quite at different paces. Site 4 passively enlarges at a frequency dictated by sites 2–3.

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00418.2013 • www.ajpheart.org
reproducibly stained by injections of FITC-conjugated dex-
trans in the peritoneal cavity (Fig. 1), a procedure that not only
eliminates the fluorescent halo usually observed on the pleural
surface of the diaphragm after intrapleural FITC injection, but,
more importantly, fills the deepest lymphatic vessels, making
them visible. Although observable from the pleural diaphrag-
detic dome, the spontaneously contracting lymphatic loops
investigated in the present study are located in the most
peripheral margin of the peritoneal diaphragm, likely in close
proximity to lymphatic vessels belonging to the peritoneal
wall. Indeed, it has been shown (10) that, at 30 min from
intrapitoneal injection, more than 90% of the injected fluo-
rescent dextrans accumulated in the transverse lymphatic ducts
proximal to peritoneal surface and in the deeper central col-
lectors, with only less than 1% of the tracer staining the
submesothelial lacunae opposite the site of injection. Because

Active contractions rely on the presence of smooth muscle
cells in the wall of lymphatic vessels. However, at least in the
diaphragmatic lymphatic vessels, the presence of the smooth
muscle alone is not an indication of a spontaneous contractile
behavior per se. Indeed, although both sites of Fig. 2, B and F,
do possess smooth muscle fibers in their respective walls, only
the former displayed a spontaneous contractile activity, while
site of Fig. 2F belongs to the passive type. The difference
between spontaneously contracting vessels and completely
passive or inert vessel segments seems to depend on smooth
muscle organization rather than on its presence alone. Indeed,
in the former sites, smooth muscle fibers are organized in a
dense net surrounding the whole circumference of the vessel
(Fig. 2C); instead, passive or inert sites either do not possess
smooth muscle fibers, or, if they do, they are sparse, preferen-
tially aligned along the major axis of the vessel, and do not
encircle the whole vessel wall (Fig. 2G), a disposition that does
not appear to be finalized to attain an efficient vessel constric-
tion. Longitudinal smooth muscle fibers might, in principle,
cause shortening of the vessels. However, the outer surface of
the diaphragmatic lymphatics appears to be tightened to the
surrounding extracellular matrix fibrils, to skeletal muscle, and,
in case of more superficial vessels, to the parietal mesothelium
(7); hence, they do not seem capable of significant shortening,
and indeed we were not able to record any shortening of
lymphatic segments along their major axis. If compared with
the compact spindle-shaped organization of smooth muscle in
arterioles (13), it is clear that smooth muscle around contract-
ing lymphatic vessels is less strictly organized. This difference
may be explained considering that, while the arteriolar smooth
muscle has to contract against an intraluminal hydraulic pres-
sure of ~80 mmHg, baseline P_{lymph} in diaphragmatic lymp-
phatic vessels may vary between −10 and 8–9 mmHg (9, 11,
17). Spontaneous contraction implies the existence, within the
population of smooth muscle cells surrounding the vessel wall,
of a subset of pacemaking cells (20–22) triggering the con-
tractile wave. However, based on images such as those pre-
sented in Fig. 2, it was not possible to identify the pacemaking
from the classical not pacemaking smooth muscle cells.

Fig. 5. Sequential activation of different sites in the same lymphatic loop. A: fluorescence image of a FITC-dextran filled lymphatic loop. Lines identify the position of sites 1–3 where the corresponding traces of B and C have been measured. Scale bar 500 μm. B: time-aligned traces of diameter change of spontaneously active (solid line; 1), stretch-activated (dark shaded line; 2), and passive (light shaded line; 3) sites recorded from the same loop over a 150-s period. C: enlarged view of the area boxed in B. The dotted vertical lines identify in temporal sequence: in trace 1, the beginning of spontaneous activation; in trace 2, the beginning of passive distension triggering the stretch-activated contraction; in trace 3, the onset of passive distension.

Fig. 6. Hyperbolic fit of the relationship between contraction frequency (beats/min) and diameter systolic change (Δ, percentage of diastolic diameter) in spontaneously contracting vessels belonging to loop structures.
The presence of both circular and longitudinal smooth muscle in the vessel wall may also be relevant from the mechanical standpoint. Indeed it has been shown (9) that the presence of muscular component around the lymphatic vessel may decrease by up to two orders of magnitude the mechanical compliance of the wall, allowing a better transmission of the external tissue forces to the vessel lumen. The spontaneously contractile vessels investigated in the present study are located in the extreme periphery of the diaphragm, where tissue displacements depending on the respiratory and the cardiac activity might be reduced compared with more central regions of the diaphragm: hence, a smooth muscle support might serve at maintaining lymphatic function in vessels otherwise poorly assisted by the extrinsic mechanism.

Indications on the actual role played by the various segments’ typology may be derived by analyzing their functional parameters (Table 1). As derived from traces of Figs. 3 and 5, both stretch-activated and passive segments receive, during their diastolic phase, a fluid volume, defined distending volume (Table 1), that increases the diameter of the vessel above their end-diastolic value. The distending volume is nil in actively contracting vessels in which the vessel returns to its presystolic end-diastolic value. The distending volume (for purely passive and stretch-activated segments); and 3) the lymph flux in all ideal vessel segments purposely set 10 μm long (Table 1). After distension, passive vessels discharge ~40% of the accumulated volume. Vice versa, during diastole, spontaneously contracting vessels do not distend above their resting volume, suggesting that their smooth muscle wall is compliant at the beginning of the diastole and becomes progressively stiffer when approaching its diastolic resting value, thus preventing further vessel enlargement. Hence, spontaneously contracting vessels seem to play an exclusively propelling function, which might, on one hand, organize the intraluminal flow direction and, on the other, by maintaining a high muscular tone, amplify the intraluminal pressure swing caused by external tissue movements. It is interesting to note that the ejection fraction of diaphragmatic spontaneously active segments (~43%, Table 1) does not greatly differ from that recorded in mesenteric lymphatics (~67%; Ref. 4); this suggests that the intrinsic contraction properties tend to be preserved in the face of a very different contribution of the extrinsic pumping mechanism, which is most prominent in diaphragmatic, but scant if any in mesenteric, lymphatics.

Stretch-activated and passive lymphatic segments. Data of Table 1 highlight the functional differences between the passive and the stretch-activated vessel segments. The large distending volume encountered in purely passive vessels indicates that, for a given vessel diameter, they are also the most compliant ones, better fit to accommodate a large amount of fluid, thus acting as a passive fluid reservoir of lymph absorbed from the surrounding interstitial space and/or pleural or peritoneal cavity. These segments may also represent lymph buffer sites, where the intraluminal volume increase limits the hydraulic pressure buildup, but it is not to be excluded that they may also represent, in line with the windkessel effect (6), sites where the elastic recoil of the lymphatic vessel wall turns a pulsatile flow continuous, thus promoting a larger overall lymph flux down the lymphatic vessel system, in accordance with what happens in arteries.

Stretch-activated segments may instead represent sites where fluid absorption is coupled to propulsion or, mechanically speaking, where the distending pressure exerted on the lymphatic wall and the resulting increased wall tension triggers an active contraction of lymphatic smooth muscle cells to propel the lymph. Indeed, to be able to contract, these vessels need to collect fluid, either absorbed of flowing from another vessel segment, to increase their volume above the resting value (Table 1). The temporal delay between changes in diameter of stretch-activated and passive segments (Fig. 5C, traces 2 and 3, respectively) indicates that, within a lymphatic loop, the pace set by stretch-activated segments imposes the filling/emptying rate of passive vessels. This suggests that 1) stretch-activated and passive segments lay in functional proximity within the loop; and 2) within the loop the fluid is propelled by the stretch-activated to the passive segments, as suggested also by the identity between the stroke volume of the former and the distending volume of the latter (Table 1). The significantly higher contraction frequency observed in spontaneously active segments, whose wall presents a rather homogenous distribution of actin, compared with stretch-activated and passive segments, characterized by scanty and/or longitudinal actin distribution, does not seem to correlate with segment resting diameter, which was similar in all observed segments.

A last remark is due on the inert segments, which seem to be completely extraneous to the loop fluid dynamics. These sites might correspond to points of confluences between segments of the superficial loops and vessels departing perpendicularly to the loop to reach the lymphatic collectors in the center of the diaphragmatic thickness (7); the fluid arriving to these branching points would leave the superficial circuit to move to central diaphragmatic collectors without affecting the diameter of the observed loops.

**Temporal and functional coordination in lymphatic loops.** Actively contracting sites were found, within the same loop, in proximity of not contracting or passive sites. On the other hand, the latter ones were never present alone, but always in proximity of active and stretch-dependent sites. The analysis of diameter changes over time (Fig. 4C) of different segments belonging to the same loop clearly indicates that they are arranged into functional units distinguishable on the basis of their contraction frequency and spontaneously active, stretch-activated, or passive behavior. Cross-correlation analysis showed that, when all vessel typologies were present in a loop, the change in diameter wave was first triggered at a spontaneously active segment and finally to the passive ones (Fig. 5). Such a temporal sequence of events is in very close agreement with the fact that the stroke volume of spontaneously active segments (Table 1) is similar to stretch-activated distending
volume, while stretch-activated stroke volume is consistent with distending volume in purely passive sites. As expected, the time delay was correlated to the distance between actively contracting and stretch activated or passive segments. However, since only ~70% of the time delay variability was accounted for by distance, other components, like for example the local compliance of the vessel sites, may play a role in delaying the wave. The propagation velocity of the contraction wave along different loops in the diaphragm (about 1.3 mm/s, see RESULTS) is lower if compared with that measured in peritoneal lymphatic vessels (4–8 mm/s, Refs. 2, 23), albeit the contraction frequency of ~7 beats/min found in the present study is in line with that reported for the same vessels in the peritoneal cavity (~9 beats/min in age-matched rats (1)). Thus it is conceivable that the electric conduction pathway of smooth muscle cells belonging to diaphragmatic lymphatic loops may differ in respect to linear peritoneal lymphatics. However, given that the linear diaphragmatic lymphatics, located medially on muscular and tendineous portion of the pleural diaphragmatic dome, do not seem to possess an intrinsic spontaneous activity, it remains to be resolved if the major source of difference in the propagation velocity of the contraction wave resides in the linear or in the loop type of vessel rather than in their tissue localization.

Albeit variable, the heterogeneous combination of sites is, however, functionally coordinated in that loops are able to sustain a unidirectional and constant lymph flux, as visually indicated by the one-way movement of fluorescent aggregate (Fig. 4B) and postulated by a mathematical model of a lymphatic vessel segment composed of several lymphangions (19). In particular, sites with a lower contraction frequency display a larger stroke volume and vice versa (Table 1, Fig. 6). The lymph flow in these deep loops at the extreme peripheral edge of the diaphragm is much smaller compared with what previously derived from direct measurement of flow velocity (8) in loops (6.9 μl/min) and linear vessels (10.6 μl/min) running over the muscular and medial tendineous pleural diaphragmatic dome, respectively. Although identification of the sites where lymph leaves the diaphragm is beyond the aims of the present study, the progressive increase in segmental lymph flow from the peripheral to the medial diaphragm suggests that lymph drained from the pleural and peritoneal cavities and from the diaphragmatic interstitium is conveyed first to the loops at the sites of lymph formation to be subsequently centripetally emptied into fewer and larger linear lymphatics running through the central diaphragmatic tendon.

Conclusion. Overall, our data show that, unlike most of the other diaphragmatic lymphatics, those supplying the most peripheral peritoneal side of the diaphragm exploit active contractions to propel lymph toward the rest of the diaphragmatic lymphatic network. At the extreme periphery of the diaphragm, these lymphatic loops compensate for the lack of strong tissue motion, which support most of lymph flux within the medial diaphragmatic lymphatic network, through a well-coordinated functional synergy between spontaneously contracting, stretch-activated, and passive vessel segments, thus guaranteeing fluid drainage from the pleural apposition zone and the perihepatic abdominal intraserosal fluid pools facing the lateral edges of the diaphragm.

APPENDIX

Lymphatic vessels functional parameters were estimated as follows:

1) Stroke volume (SV; in pl):

\[ SV = \frac{\left[ (r_D \cdot 0.35 r_D \cdot \pi) - \left( r_S \cdot 0.35 r_S \cdot \pi \right) \right] \cdot 10}{10^3} \]  

(A1)

where \( r_D \) (μm) is diastolic (distention peak value for stretch-activated vessels) radius; \( r_S \) (μm) is systolic radius (for spontaneously active and stretch-activated segments); 10 (μm) is lymphatic vessel tract in which SV was estimated; 0.35 is smaller transverse-to-the larger perpendicular lymphatic radius ratio; and \( 10^3 \) is μm³/pl conversion factor.

2) Distending volume (DV; in pl):

\[ DV = \frac{\left[ (r_E \cdot 0.35 r_E \cdot \pi) - \left( r_S \cdot 0.35 r_S \cdot \pi \right) \right] \cdot 10}{10^3} \]  

(A2)

where \( r_E \) (μm) is fully expanded radius; \( r_S \) (μm) is resting radius; and 10 (μm) is lymphatic vessel tract in which DV was estimated.

3) Ejection fraction (EF; in %):

\[ EF_S = \frac{SV}{RV} \]  

(A3)

\[ EF_D = \frac{DV}{RV} \]  

(A4)

where EF_S is spontaneously active and stretch-activated lymphatic vessel EF; EF_D is passive lymphatics EF; and RV is resting volume (pl), estimated as:

\[ RV = \frac{\left( r_D \cdot 0.35 r_D \cdot \pi \right) \cdot 10}{10^3} \]  

(A5)

where 10 (μm) is lymphatic vessel tract in which DV was estimated.

4) Lymph flux (LF; in pl/min):

\[ LF = SV \cdot CF \]  

(A6)

where CF is spontaneously active and stretch-activated contraction frequency (beats/min).

ACKNOWLEDGMENTS

Authors are thankful to Luisa Guidali for precious help with the acquisition of confocal images, and to Dr. Graziella Santoro for help in managing the laboratory work and data acquisition.

GRANTS

This work was supported by Fondo di Ricerca di Ateneo (FAR) 2011 and FAR 2012 to D. Negrini and A. Moriondo from the University of Insubria.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: A.M. and D.N. conception and design of research; A.M., E.S., and C.M. drafted manuscript; A.M., E.S., C.M., and D.N. approved final version of manuscript; D.N. edited and revised manuscript.

REFERENCES


