SERCA Cys674 sulphylation and inhibition of L-type Ca$^{2+}$ influx contribute to cardiac dysfunction in endotoxemic mice, independent of cGMP synthesis

Ion A. Hobai, 1,2 Emmanuel S. Buys, 2 Justin C. Morse, 1 Jessica Edgecomb, 1 Eric H. Weiss, 3 Antonis A. Armoundas, 3 Xiuyun Hou, 4 Alok R. Khandelwal, 4 Deborah A. Siwik, 1 Peter Brouckaert, 5 Richard A. Cohen, 4 and Wilson S. Colucci 3

1 Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; 2 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; 3 Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; 4 Vascular Biology Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; and 5 Department of Biomedical Molecular Biology, Ghent University, and Department for Molecular Biomedical Research, Flanders Institute for Biotechnology, Ghent, Belgium

Submitted 21 May 2012; accepted in final form 30 July 2013

Hobai IA, Buys ES, Morse JC, Edgecomb J, Weiss EH, Armoundas AA, Hou X, Khandelwal AR, Siwik DA, Brouckaert P, Cohen RA, Colucci WS. SERCA Cys674 sulphylation and inhibition of L-type Ca$^{2+}$ influx contribute to cardiac dysfunction in endotoxemic mice, independent of cGMP synthesis. Am J Physiol Heart Circ Physiol 305: H1189–H1200, 2013. First published August 9, 2013; doi:10.1152/ajpheart.00392.2012.—The goal of this study was to identify the cellular mechanisms responsible for cardiac dysfunction in endotoxemic mice. We aimed to differentiate the roles of cGMP [produced by soluble guanylyl cyclase (sGC)] versus oxidative posttranslational modifications of Ca$^{2+}$ transporters. C57BL/6 mice [wild-type (WT) mice] were administered lipopolysaccharide (LPS; 25 μg/g ip) and euthanized 12 h later. Cardiomyocyte sarcoplasmic reticulum Ca$^{2+}$ translocation was depressed in LPS-challenged mice versus baseline. The time constant of Ca$^{2+}$ decay (τ_{Ca}) was prolonged, and sarcoplasmic reticulum Ca$^{2+}$ load (CaSR), L-type Ca$^{2+}$ channel current (I$_{Ca-L}$) was also decreased after LPS challenge, whereas Na$^{+}$/Ca$^{2+}$ exchange activity, ryanodine receptors leak flux, or myofilament sensitivity for Ca$^{2+}$ were unchanged. All Ca$^{2+}$-handling abnormalities induced by LPS (the decrease in sarcoplasmic reticulum, ΔCa$_{SR}$, CaSR, I$_{Ca-L}$, and τ_{Ca} prolongation) were more pronounced in mice deficient in the sGC main isoform (sGC$^{1-/-}$ mice) versus WT mice. LPS did not alter the protein expression of SERCA and phospholamban in either genotype. After LPS, phospholamban phosphorylation at Ser16 and Thr17 was unchanged in WT mice. LPS did not alter the protein expression of SERCA Cys674 sulphonylation and inhibition of L-type Ca$^{2+}$ influx in endotoxemic mice, independent of cGMP synthesis.

Cardiac dysfunction induced by sepsis and sepsis mediators is associated with increases both in cGMP levels (18, 39) and radical oxygen/nitrogen species (RONS) (16) and can be prevented or reversed by both (nonselective) sGC inhibitors (31, 34) and RONS scavengers (20). Recently, it has been shown that transgenic mice that overexpress the antioxidative enzyme catalase were protected against endotoxemic cardiomyopathy (33), whereas mice deficient in the major (α$_1$β$_1$) sGC isoform (sGC$^{1-/-}$ mice) were not (6). Thus, while there is a general agreement that oxidative stress is an important mediator of SIC, the exact cellular mechanisms involved are not known.

This study aimed to distinguish the roles of sGC-derived cGMP and OPTMs in SIC and, in particular, to examine the role of OPTMs of Ca$^{2+}$ transporters. Myocytes from lipopolysaccharide (LPS)-challenged mice were examined for contractile function, intracellular Ca$^{2+}$ fluxes, and signaling pathways, including evidence of OPTMs of Ca$^{2+}$ transporters. We further tested whether sGC affected LPS-induced OPTMs in sGC$^{1-/-}$ deficient (sGC$^{1-/-}$) mice, since previous studies have suggested that sGC may oppose the development of SIC.

MATERIALS AND METHODS

LPS challenge. LPS (Sigma, 25 μg/g body wt) was administered intraperitoneally (with 0.5 ml normal saline) to male C57BL/6 mice [wild-type (WT) mice, purchased from Jackson Labs] and sGC$^{1-/-}$ mice (body weight: 22–32 g, age: 15–25 wk old). In WT and sGC$^{1-/-}$ mice, LPS induced an inflammatory shock syndrome, with lethargy, hypothermia, and bradycardia (5). Twelve hours after LPS administration, mice were euthanized with a pentobarbital overdose (10 mg ip together with 200 U heparin) (5). After euthanasia, hearts were removed and used for cardiomyocyte isolation or biochemical assays.

All animal procedures were conducted in accordance with guidelines published in the National Institutes of Health Guide for the Care and Use of Laboratory Animals (1996) and approved by the Institutional Animal Care and Use Committees of Massachusetts General Hospital and Boston University School of Medicine.

Address for reprint requests and other correspondence: I. Hobai, Boston Univ. Medical Center, Evans Basic Research Bldg., 650 Albany St., X740, Boston, MA 02118 (e-mail: ihobai@partners.org).

http://www.ajpheart.org 0363-6135/13 Copyright © 2013 the American Physiological Society

H1189
isolated sarcomere length. The amplitude of the Cai transient
elicited by a pulse from -100 mV to 0 mV. Cell capacitance
was 149 ± 10 pF in WT-BL cells and was unchanged in WT-LPS,
sGCα1^{-/-}-BL, and sGCα1^{-/-}-LPS cells (n values as in Fig. 6B).

The voltage protocol used to measure I_{Ca,L} (14) started from
a holding membrane potential of −80 mV, from which a 100-ms pretest depolarization to −40 mV (to inactivate Na⁺ channels) was followed by a 500-ms test depolarization between −30 and +50 mV (test potential) to activate I_{Ca,L} (at 0.5 Hz). I_{Ca,L} amplitude was measured as the difference between the peak inward current and the current at the end of the test depolarization. To determine I_{Ca,L} inactivation parameters, the double-pulse protocol (as described above) at a test potential at 0 mV was preceded by a series of 1-s inactivating steps to various membrane potentials (inactivation potentials).

Statistical methods. Multiple comparisons were performed using a two-way ANOVA test followed by an unpaired Student’s t-test (with a Bonferroni correction for multiple comparisons). Values are shown as means ± SE. P values of <0.05 were considered significant.

RESULTS

LPS depresses cardiomyocyte shortening and Cai transients. We (5) previously reported that administration of LPS (25 µg/g ip) to sGCα^{-/-} mice and WT mice induces an inflammatory shock syndrome, associated with cardiomyopathy. LPS-induced cardiomyopathy was more severe in sGCα^{-/-} mice than in WT mice, as evidenced by the more pronounced depression in LV ejection fraction and developed pressure (5).

To identify the cellular Ca²⁺ transporters responsible for the cardiac dysfunction induced by LPS, we studied LV myocytes isolated from WT and sGCα^{-/-} mice at BL and 12 h after the administration of LPS. We first measured sarcomere shortening and ∆Ca in isolated cardiomyocytes externally paced at 1–6 Hz (see MATERIALS AND METHODS; Fig. 1A).

Patch-clamp experiments. L-type Ca²⁺ channel (LTCC) current (I_{Ca,L}) was measured in isolated cardiomyocytes using the whole cell voltage-clamp technique, as previously described (14). The pipette solution was designed to allow selective measurements of I_{Ca,L} and contained (in mM) 110 CsCl, 5 MgATP, 10 HEPES, 0.4 MgCl₂, 5 glucose, 20 tetrodoylaminom, and 5 BAPTA (pH 7.2). Cells were loaded with the physiological solution shown above at 37°C.

To account for potential differences in cell size, I_{Ca,L} was normalized to cell capacitance, as measured by integrating the capacitative current elicited by a pulse from −80 to −100 mV. Cell capacitance was 149 ± 10 pF in WT-BL cells and was unchanged in WT-LPS, sGCα^{-/-}-BL, and sGCα^{-/-}-LPS cells (n values as in Fig. 6B).

The voltage protocol used to measure I_{Ca,L} (14) started from a holding membrane potential of −80 mV, from which a 100-ms pretest depolarization to −40 mV (to inactivate Na⁺ channels) was followed by a 500-ms test depolarization between −30 and +50 mV (test potential) to activate I_{Ca,L} (at 0.5 Hz). I_{Ca,L} amplitude was measured as the difference between the peak inward current and the current at the end of the test depolarization. To determine I_{Ca,L} inactivation parameters, the double-pulse protocol (as described above) at a test potential at 0 mV was preceded by a series of 1-s inactivating steps to various membrane potentials (inactivation potentials).

Statistical methods. Multiple comparisons were performed using a two-way ANOVA test followed by an unpaired Student’s t-test (with a Bonferroni correction for multiple comparisons). Values are shown as means ± SE. P values of <0.05 were considered significant.

RESULTS

LPS depresses cardiomyocyte shortening and Cai transients. We (5) previously reported that administration of LPS (25 µg/g ip) to sGCα^{-/-} mice and WT mice induces an inflammatory shock syndrome, associated with cardiomyopathy. LPS-induced cardiomyopathy was more severe in sGCα^{-/-} mice than in WT mice, as evidenced by the more pronounced depression in LV ejection fraction and developed pressure (5).

To identify the cellular Ca²⁺ transporters responsible for the cardiac dysfunction induced by LPS, we studied LV myocytes isolated from WT and sGCα^{-/-} mice at BL and 12 h after the administration of LPS. We first measured sarcomere shortening and ∆Ca in isolated cardiomyocytes externally paced at 1–6 Hz (see MATERIALS AND METHODS; Fig. 1A).

Patch-clamp experiments. L-type Ca²⁺ channel (LTCC) current (I_{Ca,L}) was measured in isolated cardiomyocytes using the whole cell voltage-clamp technique, as previously described (14). The pipette solution was designed to allow selective measurements of I_{Ca,L} and contained (in mM) 110 CsCl, 5 MgATP, 10 HEPES, 0.4 MgCl₂, 5 glucose, 20 tetrodoylaminom, and 5 BAPTA (pH 7.2). Cells were loaded with the physiological solution shown above at 37°C.

To account for potential differences in cell size, I_{Ca,L} was normalized to cell capacitance, as measured by integrating the capacitative current elicited by a pulse from −80 to −100 mV. Cell capacitance was 149 ± 10 pF in WT-BL cells and was unchanged in WT-LPS, sGCα^{-/-}-BL, and sGCα^{-/-}-LPS cells (n values as in Fig. 6B).

The voltage protocol used to measure I_{Ca,L} (14) started from a holding membrane potential of −80 mV, from which a 100-ms pretest depolarization to −40 mV (to inactivate Na⁺ channels) was followed by a 500-ms test depolarization between −30 and +50 mV (test potential) to activate I_{Ca,L} (at 0.5 Hz). I_{Ca,L} amplitude was measured as the difference between the peak inward current and the current at the end of the test depolarization. To determine I_{Ca,L} inactivation parameters, the double-pulse protocol (as described above) at a test potential at 0 mV was preceded by a series of 1-s inactivating steps to various membrane potentials (inactivation potentials).

Statistical methods. Multiple comparisons were performed using a two-way ANOVA test followed by an unpaired Student’s t-test (with a Bonferroni correction for multiple comparisons). Values are shown as means ± SE. P values of <0.05 were considered significant.
administration inhibits SERCA activity and, furthermore, that SERCA inhibition is opposed by sGCα1.

LPS decreases SR Ca2+ content and fractional release. SERCA inhibition after LPS administration (Fig. 1E) would be expected to cause a decrease in steady-state SR Ca2+ load. We measured SR Ca2+ content (CaSR) as the rise in CaSR induced by rapid applications of caffeine (Fig. 2A) (3). In the same experiments, we also measured the SR fractional release (FR) function (i.e., how much of the available SR Ca2+ is released during a paced action potential) as the ratio of pacing-induced Cai to CaSR (Fig. 2A) (3). In unchallenged mice, CaSR and FR were similar in WT and sGCα1−/− mice (Fig. 2, B–D). In both genotypes, cells isolated from LPS-challenged mice had smaller CaSR and FR than cells isolated from unchallenged mice (Fig. 2, B–D). The decreases in CaSR and FR induced by LPS were both more pronounced in sGCα1−/− mice (Fig. 2, B–D).

The time constant of Ca2+ decay during caffeine application (τCaff) measures the combined activity of all Ca2+ extrusion mechanisms other than SERCA, since during caffeine application, the SR release channels [ryanodine receptors (RyRs)] are kept open and SERCA cannot effectively reuptake cytosolic Ca2+ (3). The mechanisms that contribute to τCaff include
primarily the sarcolemmal Na+/Ca2+ exchanger, with a more minor contribution from the plasmalemmal Ca2+ pump, mitochondrial transporters (3), and probably others. τ_CaR did not differ in WT and sGCα1−/− mice at BL and was not affected by LPS administration (Fig. 2B), indicating that the Na+/Ca2+ exchanger and other Ca2+ extrusion mechanisms were not affected by LPS in our experimental model.

RyR leak is not changed by LPS in either group. To exclude other possible mechanisms that may contribute (beside SERCA) to the decrease in CaSR and ΔCa, after LPS, we measured the diastolic Ca2+ “leak” flux through the RyR as the decrease in the diastolic fura-2 ratio induced by rapid applications of the RyR blocker tetracaine (1 mM; Fig. 3A) (29). In all groups, RyR leak was found to be minimal (although statistically different from zero) and not different from the WT-BL group (Fig. 3B). This is consistent with the observation that diastolic Ca2+ levels were not increased after LPS challenge in both groups (Fig. 3D) and argues that RyR dysfunction (16) is not a primary mechanism in our model.

LPS depresses SERCA activity in a dose-dependent manner. After excluding the possibility of an increase in RyR leak (Fig. 3B) and the involvement of other (non-SERCA) Ca2+ extrusion mechanisms (including sarcolemmal Na+/Ca2+ exchange; Fig. 2E), SERCA inhibition remained the only possible mechanism that could account for the decrease in CaSR (Fig. 3B) and prolongation of τ_Ca (Fig. 1E) after LPS.

To confirm that SERCA inhibition is a consistent and reproducible effect of LPS, we challenged WT mice with an increased dose (50 μg/g) of LPS (due to the severity of symptoms, these mice were killed at 7 h, as opposed to 12 h, for the 25 μg/g dose). Increasing the dose of LPS induced a more pronounced inhibition of sarcomere shortening (Fig. 3C) and ΔCa (Fig. 3D) and a more pronounced prolongation of τ_Ca (reflecting a dose-dependent inhibition of SERCA function; Fig. 3E).

The effect of LPS is not mediated by changes in SERCA or phospholamban expression or phospholamban phosphorylation. We next aimed to identify the cause of the decreased SERCA activity in LPS-challenged mice. SERCA protein expression (measured by immunoblot analysis) was similar in WT and sGCα1−/− mice and was not affected by LPS administration in either genotype (Fig. 4, A and B).

The expression of phospholamban (PLB; the main regulatory protein of SERCA) was also similar before and after LPS challenge in both genotypes (Fig. 4C).
PLB regulation of SERCA is modulated by its phosphorylation (37) at two sites, Ser16 and Thr17, which were quantified using specific phosphoantibodies. The expression of both Ser16 and Thr17-phosphorylated PLB was similar in WT and using specific phosphoantibodies. The expression of both sGC/H9251 phosphorylation (37) at two sites, Ser16 and Thr17, which were quantified (e.g., via the formation of peroxinitrite, a potent oxidant (Fig. 4, D and E). Of note, the increased PLC phosphorylation seen in sGC/H9251 mice only, whereas PLB phosphorylation was unchanged in WT mice after LPS (Fig. 4, D and E). Of note, the increased PLC phosphorylation seen in sGC/H9251 mice after LPS would activate SERCA and therefore cannot be responsible for the SERCA inhibition observed in LPS-challenged mice.

LPS causes oxidative modifications of SERCA. Recently, SERCA modulation by OPTMs, and specifically SERCA inhibition after the sulphonylation of a specific cysteine residue, Cys674, has been recognized (1) and implicated in cardiac pathology and dysfunction (27). Increased oxidative stress (e.g., via the formation of peroxinitrite, a potent oxidant formed by the reaction of NO with superoxide) is a hallmark of endotoxemia and sepsis (26) and has been demonstrated in our model of murine LPS-induced cardiomyopathy (15). Therefore, we hypothesized that SERCA inhibition in LPS-challenged mice may be caused by Cys674 sulphonylation.

We quantified Cys674 sulphonylation immunohistochemically using a site-directed antibody in LV sections from WT and sGCα1−/− mice at BL (Fig. 4, D and E). Compared with WT-BL mice, both WT-LPS and sGCα1−/− mice at BL and after LPS administration (Fig. 5A). At BL, Cys674 sulphonylation was similar in WT and sGCα1−/− mice (Fig. 5B). After LPS, SERCA Cys674 sulphonylation increased in both genotypes and increased to a greater extent in sGCα1−/− versus WT mice (Fig. 5B).

We then used a complementary method to quantify OPTMs of SERCA. The BIAM-labeling technique (21) is based on the trans-sarcolemmal Ca2⁺-ATPase (SERCA) transport in a dose-dependent fashion. A: RyR leak was measured as the downward shift in diastolic Ca⁺⁺ induced by rapid applications of tetracaine (in Na⁺⁻ and Ca2⁺⁻-free Tyrode solution to block trans-sarcolemmal Ca2⁺ fluxes), as shown here for a WT-LPS cell. The top trace shows that diastolic Ca⁺⁺ levels were unchanged during the application of Na⁺⁻ and Ca2⁺⁻-free Tyrode solution. The bottom trace shows that the application of tetracaine induced a small (but visible) downward shift in the level of diastolic ΔCa⁺⁺. Caffeine application demonstrated that CaSR was similar in the two conditions, confirming that no amount of Ca2⁺⁺ was lost during the Na⁺⁻ and Ca2⁺⁻-free Tyrode application. B: on average, RyR leak was minimal in all groups and was not different from the WT-BL group. n = 9–11 cells from 2–3 mice for each group. C–E: LPS induced a dose-dependent inhibition of sarcomere shortening, ΔCa⁺⁺, and SERCA function. Shown are steady-state sarcomere shortening (C), ΔCa⁺⁺ (D), and τCa (E) in WT cardiac cells isolated at BL and 12 h after the administration of 25 μg/g LPS (same data as shown in Fig. 1) as well as 7 h after the administration of 50 μg/g LPS (n = 35 cells from 5 mice). *P < 0.05 for all groups vs. the WT-BL group.
labeled SERCA, which was more severe in sGC\textsubscript{\textalpha}{1}-/-LPS mice than in WT-LPS mice, is thus consistent with the increased levels of SERCA Cys674 sulphonylation described above. Interestingly, in sGC\textsubscript{\textalpha}{1}-/- mice at BL, SERCA BIAM labeling was also markedly decreased versus WT-BL mice (see Discussion; Fig. 5D).

As shown in Fig. 5E, we plotted the degree of SERCA inhibition (calculated as the inverse of \(\frac{C}{C_{\text{Ca}}} \), using the data shown in Fig. 1E, and expressed as a percentage of the WT-BL group) against the degree of Cys674 sulphonylation (data shown in Fig. 6B) for the four groups. There was a very strong correlation between the degree of Cys674 sulphonylation and SERCA transport inhibition induced by LPS in both WT and sGC\textsubscript{\textalpha}{1}-/- mice, consistent with the hypothesis that SERCA inhibition after LPS is mediated by Cys674 sulphonylation.

Cardiac LTCC current is decreased in endotoxemic WT and sGC\textsubscript{\textalpha}{1}-/- mice. In addition to SERCA (Fig. 1E), the Na+/Ca2+ exchanger (Fig. 2E), and the RyR (Fig. 3B), the LTCC is another major Ca2+ transporter in the cardiac cell. The fact that LPS administration induced a decrease in SR FR [which is dependent on the amplitude of Ca2+ entry (Ca\textsubscript{L}) via LTCCs; Fig. 2D] suggested that LPS may induce an inhibition of LTCC function in mice. Therefore, we next measured \(I_{\text{Ca,L}} \) selectively in voltage-clamped myocytes from WT and sGC\textsubscript{\textalpha}{1}-/- mice at BL and after LPS administration (see MATERIALS AND METHODS).

At BL, \(I_{\text{Ca,L}} \) (normalized for cell capacitance) was similar in sGC\textsubscript{\textalpha}{1}-/- and WT cells at all membrane potentials (Fig. 6, A and B). Administration of LPS caused a decrease in \(I_{\text{Ca,L}} \) that was similar in sGC\textsubscript{\textalpha}{1}-/- and WT mice (Fig. 6, A and B).

To investigate whether the decrease in \(I_{\text{Ca,L}} \) induced by LPS is associated with changes in the voltage-dependent gating of the channel, we measured the activation and inactivation parameters of LTCC, as previously described (14). In WT-BL cells, LTCC activation (Fig. 6C) occurred with a half-maximal voltage of \(-15.5 \pm 0.4\) mV and slope of 5.7 \pm 0.35 mV, whereas channel inactivation (Fig. 6D) occurred with a half-maximal voltage of \(-28.6 \pm 0.2\) mV and a slope of 5.6 \pm 0.2 mV. For both activation and inactivation functions, half-maximal voltages and slopes were similar in WT and sGC\textsubscript{\textalpha}{1}-/- mice and were not changed after LPS administration (Fig. 5, C and D).

LPS decreases Ca\textsubscript{L} via LTCCs in both genotypes. As a complementary method of assessing LTCC function, we measured Ca\textsubscript{L} into the cell in intact myocytes as the amplitude of the first Ca2+ transient elicited by resuming external pacing after a caffeine application (as shown in Fig. 2A). Under these conditions, after caffeine washoff, with all SR Ca2+ having been released and removed from the cell (mostly via forward Na+/Ca2+ exchange) and thus in the absence of any Ca2+ release from the SR, the first Ca2+ transient recorded when pacing resumes was a reflection of the amount of Ca\textsubscript{L} during the triggered action potential (Fig. 6E).

At BL, Ca\textsubscript{L} was smaller in sGC\textsubscript{\textalpha}{1}-/- versus WT myocytes. Administration of LPS caused a decrease in Ca\textsubscript{L} in both groups, with a larger decrease observed in sGC\textsubscript{\textalpha}{1}-/- versus WT cells (Fig. 6F).

Administration of LPS is not associated with decreased myofilament Ca2+ sensitivity. Finally, we wanted to exclude other potential mechanisms that could contribute to the development of LPS-induced cardiomyopathy, such as a possible decrease in myofilament sensitivity (32). When we compared the results shown in Fig. 1, B and C, we found that, in both genotypes, LPS induced a parallel decrease in sarcomere shortening and \(\Delta C_a \) (Fig. 7A). It was reasonable to assume that the decrease in sarcomere shortening was (at least partially) the result of the decrease in \(\Delta C_a \), but whether there was an additional contribution from a decrease in the Ca2+ sensitivity of the myofilaments (32) was unclear.

To answer this question, we measured sarcomere shortening at various \(\Delta C_a \) in WT-BL cells (building a sarcomere shortening:\(\Delta C_a \) dependence curve) and compared sarcomere shortening at similar \(\Delta C_a \) in WT-BL and WT-LPS as well as sGC\textsubscript{\textalpha}{1}-/--BL and sGC\textsubscript{\textalpha}{1}-/--LPS mice. For this, we used caffeine applications to unload the SR, and we analyzed sarcomere shortening and \(\Delta C_a \) during their gradual increase observed when pacing was resumed after caffeine washoff [a
phenomenon also known as “staircase” (Fig. 7B) and reflecting the refilling of the SR with Ca$^{2+}$ (Fig. 7C). We then plotted sarcomere shortening versus ΔCac for each paced Ca$^{2+}$ transient (Fig. 7D) and averaged sarcomere shortening for ΔCac bins equal to 0.1 fura ratiometric units (Fig. 7E). We then plotted sarcomere shortening versus ΔCac in WT-BL cells and compared data obtained with the steady-state values measured in cells from WT and sGCα1−/− mice before and after LPS.

As shown in Fig. 7E, the decrease in sarcomere shortening induced by LPS in WT and sGCα1−/− mice was not different from what we would expect from the decrease in ΔCac alone. We therefore concluded that, in this model, the decrease in sarcomere shortening after LPS is solely due to the decrease in ΔCac without a significant change in myofilament sensitivity for Ca$^{2+}$.

DISCUSSION

This study aimed to identify the mechanisms responsible for the development of cardiac dysfunction in endotoxemic mice and, in particular, to differentiate between the roles of sGC-released cGMP and OPTMs of cardiac Ca$^{2+}$-handling proteins. We first identified SERCA and LTCC inhibition as the primary mechanisms responsible for SIC. We then demonstrated that SERCA inhibition in LPS-challenged mice is associated with OPTMs of SERCA and, specifically, the sulphonylation of Cys674, a modification that is known to inhibit SERCA activity. Experiments performed in sGCα1−/− mice further revealed that, consistent with our previous findings (5) and in contrast to previously held notions (31, 34), sGC-released cGMP does not contribute to the contractile deficit and, in fact, appears to play a protective role in SIC, by limiting the degree of oxidative damage to SERCA.

SERCA dysregulation in LPS-induced cardiac dysfunction. In our model, the impairment of cardiac contractility after LPS challenge is due to a decrease in cell ΔCac (Fig. 1) in the absence of any additional contribution that could have arisen from a decrease in myofilament sensitivity to Ca$^{2+}$ (Fig. 7) (23).

The absence of a decrease in myofilament sensitivity is interesting, given that this is one of the first mechanisms that has been recognized and implicated in the pathology of sepsis-induced cardiac dysfunction (4) and has been demonstrated across species and disease models (17, 32). In particular, a decrease in myofilament sensitivity has been demonstrated in mice challenged with a low dose (5 μg/g) of LPS and was found to be secondary to increased PKA phosphorylation of troponin I (23). However, we found myofilament sensitivity to
be unchanged in mice challenged with 25 μg/g LPS. In another study (16), myofilament sensitivity was actually increased in mice challenged with 50 μg/g LPS, secondary to OPTM of the myofilaments. Putting together the data from these three laboratories (with the associated caveats), the emerging picture is that of a reversed dose dependency, with myofilament sensitivity being decreased after low-dose LPS challenge but increased at higher doses, reflecting the interplay between the inhibitory effects of troponin I phosphorylation (23) and activatory OPTMs (16).

In our model, the decrease in ΔCa, elicited due to a concerted decrease in SR Ca\(^{2+}\) load, SR FR (Fig. 3), and CAE (Fig. 6), which, in turn, appeared secondary to the inhibition of SERCA and LTCC activity (Fig. 4). Among the other Ca\(^{2+}\) transporters, no change was found in the function of RyRs (Fig. 4), sarcoplasmic Na\(^{+}/\)Ca\(^{2+}\) exchange, or other Ca\(^{2+}\) removal mechanisms (Fig. 3D).

SERCA inhibition has been previously demonstrated in two different rat (7, 35, 41) and dog (36) models of SIC. From a methodological point of view, it is important to point out that, in our study, SERCA activity was measured in intact cells, as Ca\(^{2+}\) transient τCa (Fig. 1E). As such, SERCA inhibition after LPS was evidenced as τCa prolongation. This approach has the advantage of being performed in the same cells and the same conditions as the measurements of ΔCa and sarcomere shortening (Fig. 1, A–C), thus implicating SERCA inhibition as the primary mechanisms responsible for the decrease in sarcomere shortening without the need of additional assumptions regarding experimental conditions. We are aware that, from a methodological point of view, this approach is not perfectly specific since τCa is not solely determined by SERCA transport but includes also other extrusion mechanisms, such as sarcoplasmic Na\(^{+}/\)Ca\(^{2+}\) exchange, the sarcolemmal Ca\(^{2+}\) pump, the mitochondrial Ca\(^{2+}\) uniporter, and probably others. We therefore measured global Ca\(^{2+}\) transport through these “non-SERCA extrusion mechanisms” as τCaff (Fig. 2E). τCaff was unchanged after LPS administration in both WT and sGC\(\alpha_1\)^−/− mice, indicating that there was no change in Ca\(^{2+}\) transport through any other extrusion mechanisms other than SERCA. Moreover, if one compares the absolute values of τCa (≈75 ms; Fig. 1E) with τCaff (≈1,700 ms, i.e., ≈23 times slower; Fig. 3D), it becomes apparent that SERCA reuptake is by far the largest contributor (≈96%) for τCa, with Na\(^{+}/\)Ca\(^{2+}\) exchange and all other mechanisms contributing to only 4%, which is the
usual finding in mice at 37°C (3). As such, the only possible explanation for the \(\tau_{Ca} \) prolongation after LPS in both WT and sGC\(\alpha_1^{+/−} \) mice was that SERCA transport was depressed.

LPS induces inhibitory SERCA OPTMs. Likewise, the only mechanisms that could explain the inhibition of SERCA transport induced by LPS is the oxidation of Cys\(^{674} \) demonstrated by both sulfonic acid present on the Cys\(^{674} \) thiol (Fig. 6, A and B) and by decreased BIAM labeling (Fig. 6, C and D). Although other irreversible oxidative modifications on Cys\(^{674} \) (as well as other amino acids in SERCA) are possible, our antibody and BIAM methods demonstrate conclusively that the most reactive thiol on the protein is oxidized. Neither SERCA nor PLB expression were changed in LPS-challenged mice. PLB phosphorylation at both Ser\(^{16} \) (Fig. 5D) and Thr\(^{17} \) (Fig. 5E) was unchanged after LPS in WT mice and actually increased in sGC\(\alpha_1^{+/−} \) mice (which would have an activating effect on SERCA uptake; see below).

SERCA regulation by RONS has recently emerged as the underlying mechanism in a number of physiological and pathological processes. RONS-induced OPTMs are able to both activate and inhibit SERCA transport, depending on the specific RONS involved and its concentration. Reversible glutathiolation of SERCA Cys\(^{674} \) [such as that induced by the NO donor nitroxyl (21)] increases SERCA transport, whereas irreversible sulfonylation (by H\(_2\)O\(_2\) or peroxynitrite) is associated with SERCA inhibition (19).

The present study is the first to provide direct evidence showing that oxidative modifications of SERCA play a role in the development of endotoxemic cardiomyopathy. Increased cellular RONS levels have been a hallmark of the pathology of sepsis and septic shock (26), including increased levels of superoxide anion (generated by uncoupled NOS and also by NADPH oxidases, xanthine oxidase, and mitochondria), peroxynitrite (formed by superoxide anion reaction with NO), and also hydroxyl radical and H\(_2\)O\(_2\) (26). Peroxynitrite, in particular, has been previously postulated to play a role in the pathogenesis of endotoxemic cardiomyopathy (20), although the detailed mechanisms were still unclear at that time. The new data obtained here indicate that one possible mechanism involved is sulphonylation of SERCA Cys\(^{674} \).

LTCC dysregulation in LPS-induced cardiac dysfunction. In addition to SERCA inhibition, LTCC dysregulation (40) is
another mechanism that underlies the decrease in ΔC_{ai}, C_{asR}, and FR in endotoxic mice. LTCC dysfunction after LPS challenge was demonstrated here as both a decrease in $I_{Ca,L}$ (Fig. 6, A and B) and a decrease in C_{asR} (Fig. 6, C and D). As yet, the mechanisms underlying LTCC dysfunction are unclear. In particular, it is still unknown whether the decrease in $I_{Ca,L}$ after LPS is due to LTCC downregulation or to an allosteric inhibitory effect. However, the fact that the decrease in $I_{Ca,L}$ and C_{asR} after LPS persisted in sGCα_1-/- mice would indicate that LTCC dysregulation is also mediated by cGMP-independent mechanisms.

LPS-induced Ca^{2+} dysfunction is more severe in sGCα_1-/- (vs. WT) mice. As far as our initial goal is concerned, an additional confirmation of the notion that the development of cardiac Ca^{2+} dysregulation in endotoxic cardiomyopathy occurs through mechanisms independent of sGC-released cGMP was the fact that all the Ca^{2+}-handling abnormalities induced by LPS in WT mice (the decrease in sarcomere shortening, ΔC_{ai}, C_{asR}, FR, $I_{Ca,L}$, and C_{asR} and the prolongation of τ_{Ca}) were not prevented (and many were actually worsened) in sGCα_1-/- mice. These observations are consistent with and extend our prior observation that LPS-induced cardiac dysfunction and death were not prevented in sGCα_1-/- mice (5).

sGCα_1-/- mice are genetically engineered to express a mutant, catalytically inactive sGC$\alpha_1$$\beta_1$-isoform, which leads to an almost complete inability to synthesize cGMP (<1% of WT mice) both at BL and after stimulation with NO donors (5) (although the minor sGC$\alpha_2$$\beta_1$-isoform is still present and at levels comparable with WT mice). However, since cGMP generated by various sources may act in distinct intracellular compartments (30), the possibility persisted that the effects of LPS on sGCα_1-/- mice (5) are mediated by localized increases in cGMP originating from the sGCα_2-isoform.

As far as SERCA inhibition is concerned, if this was the case, then we would have expected to find evidence for underlying mechanisms compatible with the known effects of cGMP, such as, for example, a decrease in PLB phosphorylation after activation of phosphodiesterase (PDE)2 (25), similar to the effects described for the LTCC (11). Our experiments dismissed this possibility by demonstrating that PLB phosphorylation was unchanged after LPS in WT mice (and actually increased after LPS in sGCα_1-/- mice; see below) and identified SERCA OPTMs as the causative mechanisms for SERCA inhibition in endotoxic mice.

Dual effects of cGMP in sepsis. By comparing the effects of LPS on SERCA in sGCα_1-/- and WT mice, we revealed that sGCα_1-/- mice showed (vs. WT mice) a more severe inhibition of SERCA function (Fig. 1E), associated with two different modifications. On the one hand, sGCα_1-/-LPS mice showed higher levels of inhibitory Cys594 sulphonylation (Fig. 6), which most likely represents the mechanisms underlying SERCA inhibition. On the other hand, however, sGCα_1-/-LPS mice also showed higher levels of PLB phosphorylation (vs. WT-LPS mice; Fig. 5). PLB phosphorylation would activate SERCA and thus would represent a partially compensatory mechanism that opposes SERCA inhibition by OPTMs in endotoxic cardiomyopathy.

Therefore, the emerging picture is that cGMP plays dual, opposite roles in what regards SERCA regulation in the endotoxic myocardium. The principal effect of cGMP is protective, by limiting SERCA OPTMs. However, cGMP appears to also play a second, more minor role, in which, by limiting PLB phosphorylation, cGMP may limit a possibly compensatory PKA-dependent SERCA activation. The latter effect is compatible with cGMP-dependent activation of PDE2 (25), which would increase cAMP degradation and thus limit PKA-dependent phosphorylation.

Antioxidant effect of cGMP. It is important to emphasize that the overall effect of cGMP in SIC is a protective one, which is consistent with our previous study (5). This is supported by the finding that sGCα_1-/- mice exhibited an increased susceptibility to LPS-induced Ca$^{2+}$-handling abnormalities, such as the decrease in sarcomere shortening, ΔC_{ai}, C_{asR}, and FR. Underlying these effects, SERCA transport inhibition (evidence here as the prolongation of τ_{Ca}) and the degree of SERCA OPTMs (Fig. 6) were all more pronounced in sGCα_1-/- mice versus WT-LPS mice. The latter finding suggests that sGC-released cGMP may play an antioxidant role (10) in sepsis and SIC, thus offering a possible explanation for the cardioprotective effects of sGC previously reported (5).

With respect to the possible interactions between sGC-released cGMP and RONS, it is important to note that, at BL, sGCα_1-/- mice also showed evidence of SERCA OPTMs (as the decrease in SERCA BIAM labeling; Fig. 6, C and D) other than Cys594 sulphonylation (which was not increased; Fig. 6, A and B) and that were not associated with a change in the rate of SERCA transport (Fig. 1E). It is known that RONS-induced OPTMs are able to both activate and inhibit SERCA transport, with milder modifications [such as glutathionylation by low concentration peroxinitrite (2)] activating SERCA and more severe OPTMs [such as sulphonylation (19)] being inhibitory. Therefore, it is possible that sGCα_1-/- mice at BL present either a combination of both activating and inhibitory OPTMs of SERCA or, currently not described OPTMs that leave the overall transport rate unchanged. The exact answer of this question remains for the future, together with the identity and sources of RONS involved, as well as providing direct evidence for a causative relationship between cGMP deficiency and increased RONS stress.

Clinical implications and future directions. This study was partly motivated by the disappointing result of a clinical trial (24) in which administration of a NOS inhibitor (N-methyl-L-arginine) failed to provide benefits and actually increased the mortality of septic patients (24). In this trial (24), the deaths of patients in the N-methyl-L-arginine-treated group were largely due to the development of cardiac dysfunction, which would have been interrupted by N-methyl-L-arginine may play a critical cardioprotective role in sepsis. Subsequent experimental work indicated that such cardioprotective effects could be mediated by the constitutive NOS isoforms NOS1 (8) and/or NOS3 (16) and/or by mediators distal of NO, such as sGC$\alpha_1$$\beta_1$ (5). Our data indicate that the adverse effects of N-methyl-L-arginine may be related to loss of the cardioprotective effects of sGC-released cGMP to decrease SERCA OPTMs. Nevertheless of the exact explanation, given the pivotal role played by NOS2-released NO in sepsis and septic shock (22), it is likely that any effective therapeutic strategy must be able to interrupt the NOS2 pathway. If direct NOS inhibition is not beneficial (24), then it follows that the search for an effective therapy for septic shock requires the identification and target-
ing of the mediators that are downstream of NO. In this respect, the present experiments implicate the effects of cellular oxidative stress on SERCA and exonerate the sGC-cGMP axis. Therefore, our experiments indicate that the search for an effective therapeutic strategy in sepsis should focus on the selective inhibition of RONS-mediated OPTMs (9, 13) while sparing cardioprotective sGC-cGMP signaling.

ACKNOWLEDGMENTS

I. A. Hobai thanks Dr. Jeanine Wiener-Kronish, Dr. Lisa Leffert, and Dr. Keith Miller (Massachusetts General Hospital) for continuing support and encouragement.

GRANTS

This work was supported by National Institutes of Health (NIH) Grants HL-061639 (to W. S. Colucci), HL-064750 (to W. S. Colucci), and HL-31607 (to R. A. Cohen) and by the NIH-sponsored Boston University Cardiovascular Proteomics Center (Contract No. N01-HV-28178, to W. S. Colucci). I. A. Hobai acknowledges support from National Institutes of Health Grants K08-GM-096082 and T32-GM-007592 and the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital. Other support includes American Heart Association Grants 10SDG2610313 (to E. S. Buys), 0635127N (to A. A. Armoundas), and 8815767D (to E. H. Weiss), the Deane Institute for Integrative Research in Atrial Fibrillation and Stroke (to A. A. Armoundas), the Cardiovascular Research Society (to A. A. Armoundas), and Boston University (Student Research Awards to J. C. Morse and J. Edgecomb).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: I. A. Hobai, I. A. Hobai acknowledges support from National Institutes of Health Grants K08-GM-096082 and T32-GM-007592 and the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital. Other support includes American Heart Association Grants 10SDG2610313 (to E. S. Buys), 0635127N (to A. A. Armoundas), and 8815767D (to E. H. Weiss), the Deane Institute for Integrative Research in Atrial Fibrillation and Stroke (to A. A. Armoundas), the Cardiovascular Research Society (to A. A. Armoundas), and Boston University (Student Research Awards to J. C. Morse and J. Edgecomb).

REFERENCES

Downloaded from http://ajpheart.physiology.org/ by 10.220.33.2 on September 22, 2017

