Protective effects of histamine on G_q-mediated relaxation in regenerated endothelium

Calvin K. Chan,1 Song Yan Liao,2 Yue Lin Zhang,2 Aimin Xu,1,2,3 Hung Fat Tse,2 and Paul M. Vanhoutte1,3,4

1Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China; 2Department of Medicine, University of Hong Kong, Hong Kong, China; 3State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, China; and 4Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Korea

Submitted 25 September 2013; accepted in final form 22 October 2013

Chan CK, Liao SY, Zhang YL, Xu A, Tse HF, Vanhoutte PM. Protective effects of histamine on G_q-mediated relaxation in regenerated endothelium. Am J Physiol Heart Circ Physiol 306:H286–H290, 2014. First published November 8, 2013; doi:10.1152/ajpheart.00733.2013.—In the porcine coronary artery, regenerated endothelium is dysfunctional as regards the responses to endothelium-dependent agonists. The current study aimed to determine the possible involvement of histamine in such dysfunction. Pigs were treated chronically with pyrilamine (H_1 receptor inhibitor, 2 mg·kg^{-1}·day^{-1}) with part of their coronary endothelium and allowed to regenerate for 28 days after balloon denudation. The results showed a reduction in relaxation to bradykinin (G_q protein dependent) only in the pyrilamine-treated group (area under the curve, 269.7 ± 13.4 vs. 142.0 ± 31.0, native endothelium vs. regenerated endothelium) but not in the control group (253.0 ± 22.1 vs. 231.9 ± 29.5, native endothelium vs. regenerated endothelium). The differences in the relaxation to serotonin (G_i protein dependent) between native and regenerated endothelium were not affected by the pyrilamine treatment (control group, 106.3 ± 17.0 vs. 55.61 ± 12.7; and pyrilamine group, 106.0 ± 8.20 vs. 49.30 ± 6.31, native endothelium vs. regenerated endothelium). These findings indicate that during regeneration of the endothelium, the activation of H_1 receptors by endogenous histamine may be required to maintain the endothelium-dependent G_q protein-mediated relaxation to bradykinin, suggesting a beneficial role of the monoamine in the process of endothelial regeneration.

THE TURNOVER OF endothelial cells is slow but can be accelerated when exposed to excessive stress, such as hypoxia, oxidative stress, or detrimental shear stress. The apoptotic, dying endothelial cells will detach from the internal elastic membrane and be washed away by the flowing blood, which liberates adjacent endothelial cells from “contact inhibition,” thus permitting mitosis and regeneration (28, 35, 36). Although the regenerated endothelial cells form a new monolayer lining and can produce nitric oxide (NO), they are dysfunctional and constitute a way inhibitor (TFPI) were downregulated (13). These changes can lead to augmented oxidative stress and causes the cells to become prothrombotic, which possibly increases the production of tissue factor and can subsequently lead to fibrin deposition (5, 21, 29).

Histamine is synthesized from histidine by histidine decarboxylase and rapidly degraded by histamine N-methyltransferase or diamine oxidase (16) unless stored in mast cells and basophils (33). Upon stimulation, histamine is released to carry out a diverse range of functions as proinflammatory chemokine (16). In particular, histamine contributes to the regulation of vascular tone. When it binds to H_2 receptors on vascular smooth muscle cells, vasoconstriction results (17, 31). Acute activation of H_1 receptors on the endothelium leads to increased production of NO and endothelium-dependent vasodilatation (12, 31).

 Mast cells are a major source of histamine and are associated with atherosclerotic lesions (1, 8). Genetically engineered animals with histamine deficiency exhibited reduced atherosclerosis (38). Human studies also showed that the presence of activated mast cells is associated with atherosclerotic plaque instability (11). During the atherosclerotic process, tissue factor is released and exacerbates intimal thickening (29). In regenerated endothelial cells, the expression of TFPI is downregulated (13), implying that unchecked activity of tissue factor may contribute to the occurrence of endothelial dysfunction upon regeneration. Histamine may also contribute to the progression of the process since it induces the release of tissue factor, but not that of its physiological antagonist TFPI (29). Therefore, the present experiments were designed to test the hypothesis that chronic in vivo treatment with pyrilamine (H_1 receptor antagonist) prevents the dysfunction, as well as the resulting thickening of the intima-medial layer, associated with endothelial regeneration in the porcine coronary artery. The experiments were performed in parallel with another study (6) of which the untreated control group was used for statistical comparison with the present results obtained in pyrilamine-treated pigs.

METHODS

The present studies were approved by the Institutional Animal Care Committee of the University of Hong Kong.

Source and holding conditions. Female pigs (3 to 4 mo old, weighing between 25 and 35 kg) were purchased from local farms in Hong Kong and fed with laboratory chow (Labdiet, St. Louis, MO) and water ad libitum. They were kept at 21 ± 1°C in a 12-h:12-h light-dark cycle. Under anesthesia (isoflurane, 2%) mixed with breathing gases, the endothelium of ~2 cm of the left anterior descending artery (immediately distal to the first branch) was removed by balloon
angioplasty, as described (6, 25) An angiogram was taken to ensure that no immediate vasospasm occurred in the denuded region. The animals were then given antibiotics and analgesics and observed until they recovered from the anesthesia. After recovery, they were randomly assigned to be treated once a day with pyrilamine maleate [2 mg·kg⁻¹·day⁻¹, based on the recommended daily dose for humans and the 1:1 conversion ratio for human to pig according to the Food and Drug Administration (http://www.fda.gov/downloads/Drugs/Guidances/UCM078932.pdf)], which was mixed with chow (n = 5) or control (n = 6) for 28 days; earlier work has demonstrated that the regenerated endothelial lining is complete after 4 wk, and endothelial dysfunction is fully established and the atherosclerotic process has commenced (25, 26). The pigs were anesthetized and euthanized following an identical protocol as for the acute studies except that there was no addition of pyrilamine to the organ chambers at any time.

Isometric tension recording.

Rings, with either native or regenerated endothelium of the same hearts, were equilibrated for 1 h in organ chambers containing control solution aerated with 95% oxygen and 5% carbon dioxide (Hong Kong Oxygen & Acetylene, Hong Kong) and maintained at 37°C. They were suspended in the solution between two metal hooks, of which the top one was connected to a force transducer (AD Instruments, Sydney, Australia) for isometric tension recording (PowerLab, AD Instruments). The rings were allowed to equilibrate at optimal basal tension (2 g) for 60 min. They were then exposed to 60 mM potassium chloride twice before the actual experiment to obtain a reference contraction.

The direct pharmacological effect of pyrilamine on vascular responsiveness was assessed in acute in vitro studies, whereby coronary arterial rings (with native or regenerated endothelium) of six untreated pigs were incubated for 40 min in control solution with or without pyrilamine [30 min, 10⁻⁶ M; H₁-histaminergic antagonist (7)]; the rings were contracted with the thromboxane receptor agonists prostaglandin F₂α (3 × 10⁻⁶ M, for the response to serotonin) or U46619 (3 × 10⁻⁸ M, for the responses to bradykinin, detaNONOate, and isoproterenol) until a plateau contraction was obtained. Then cumulative concentration-relaxation curves were obtained for serotonin [10⁻⁶ to 10⁻⁴ M; in the presence of ketanserin (10⁻⁶ M)], bradykinin (10⁻⁹ to 10⁻⁴ M); and detaNONOate (10⁻¹⁰ to 10⁻⁶ M) or isoproterenol (10⁻⁹ to 10⁻⁶ M).

For preparations of the chronic pigs (control or treatment with pyrilamine), relaxations to serotonin [10⁻⁹ to 10⁻⁶ M; in the presence of ketanserin (10⁻⁶ M)], bradykinin (10⁻⁹ to 10⁻⁶ M), detaNONOate (10⁻¹⁰ to 10⁻⁶ M), or isoproterenol (10⁻⁹ to 10⁻⁶ M) were obtained, after the region of the left anterior descending coronary artery with endothelial denudation and of the left circumflex coronary artery at approximately the same distance from the aorta were stained with modified Curtis’s Ponceau solution and counter stained with Mayer’s hematoxylin solution and compared. The intimamedial layer was identified as the region between the lumen and the basal membrane outside of the medial layer. The mage was captured at ×2 using a microscope (Olympus, Hong Kong) and analyzed with a computer package (Olympus) (6).

Calculation and data analysis.

The relaxations are expressed as percent decreases in tension from the maximal contraction level to U46619 or PGF₂α. The results are presented as the mean number of experimental animals tested. The results were analyzed statistically by one-way or two-way ANOVA with Bonferroni’s post hoc test. The results were calculated, analyzed, and graphed by the computer packages, Excel 2007 (Microsoft) or Prism version 5 (GraphPad Software, La Jolla, California). The area under the concentration response curves were calculated using Prism version 5 and the averages were analyzed and compared with Student’s t-test for unpaired observations with Prism version 5. When P was <0.05, the differences were considered to be statistically significantly different.

Drugs and chemicals.

(Z)-7-[(1S,4R,5R,6S)-5-[(3-hydroxyoct-1-enyl)-3-oxabicyclo[2.2.1]heptan-6-yl]-hept-5-enoic acid (U46619) was purchased from Biomol International (Plymouth, PA). All other chemicals were purchased from Sigma Chemicals (Shanghai, China).

RESULTS

Lack of acute effect of pyrilamine on vascular responsiveness.

Acute in vitro exposure of porcine coronary arteries with either native or regenerated endothelium to pyrilamine (10⁻⁶ M) had no significant effect on the relaxations to endothelium-depen-

Table 1. Area under the concentration-relaxation curves in rings of porcine coronary artery

<table>
<thead>
<tr>
<th></th>
<th>Control Native</th>
<th>Control Regenerated</th>
<th>Pyrilamine Native</th>
<th>Pyrilamine Regenerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradykinin</td>
<td>246.4 ± 30.6</td>
<td>264.2 ± 24.9</td>
<td>252.5 ± 17.7</td>
<td>254 ± 11.4</td>
</tr>
<tr>
<td>DetaNONOate</td>
<td>153.2 ± 14.0</td>
<td>158.1 ± 13.7</td>
<td>153.8 ± 17.6</td>
<td>146.5 ± 12.7</td>
</tr>
<tr>
<td>Serotonin</td>
<td>90.95 ± 24.6*</td>
<td>32.13 ± 12.3</td>
<td>91.44 ± 20.0*</td>
<td>27.64 ± 5.15</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>169.5 ± 28.6</td>
<td>163.4 ± 16.0</td>
<td>170.8 ± 19.7</td>
<td>166.7 ± 17.0</td>
</tr>
<tr>
<td>Chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradykinin</td>
<td>253.0 ± 22.1</td>
<td>231.9 ± 29.5</td>
<td>269.7 ± 13.4*</td>
<td>142.0 ± 31.0</td>
</tr>
<tr>
<td>DetaNONOate</td>
<td>153.6 ± 13.9</td>
<td>161.2 ± 14.6</td>
<td>151.9 ± 12.7</td>
<td>169.9 ± 11.9</td>
</tr>
<tr>
<td>Serotonin</td>
<td>106.3 ± 17.0*</td>
<td>55.61 ± 12.7</td>
<td>106.0 ± 8.20*</td>
<td>49.30 ± 6.31</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>174.5 ± 23.9</td>
<td>176.0 ± 18.2</td>
<td>180.7 ± 5.30</td>
<td>166.7 ± 7.20</td>
</tr>
<tr>
<td>KCl contraction, g</td>
<td>4.6 ± 0.3</td>
<td>4.0 ± 0.3</td>
<td>4.3 ± 0.2</td>
<td>4.3 ± 0.3</td>
</tr>
<tr>
<td>Acute</td>
<td>4.0 ± 0.4</td>
<td>4.0 ± 0.3</td>
<td>4.2 ± 0.2</td>
<td>4.3 ± 0.3</td>
</tr>
<tr>
<td>Chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Area under the concentration-relaxation curves to bradykinin (10⁻¹⁰ to 10⁻⁶ M), detaNONOate (10⁻⁸ to 10⁻⁴ M), serotonin (10⁻⁹ to 10⁻⁶ M), and isoproterenol (10⁻⁹ to 10⁻⁶ M) in rings of porcine coronary artery lined with native or regenerated endothelium with acute (10⁻⁶ M, 30 min) and chronic (2 mg/kg/day for 28days) treatment with pyrilamine. The relaxations are expressed as area under the curve in arbitrary units. The baseline contractile responses to KCl (60 mM) are shown. Results are means ± SE; n = 5 to 6. *P < 0.05, native vs. regenerated. Data from Chan et al. (6), used with permission.
dent (bradykinin and serotonin) and endothelium-independent detaNONOate and isoproterenol, as demonstrated by the lack of significant differences compared with control (Table 1). However, the preparations with regenerated endothelium showed significantly smaller relaxations to increasing concentrations (10^{-9} to 10^{-6} M) of serotonin [in the presence of ketanserin (10^{-6} M) to prevent activation of vascular smooth muscle (34)] in rings with regenerated endothelium than in those containing native endothelial cells (Table 1). By contrast, relaxations to another endothelium-dependent vasodilator bradykinin (10^{-10} to 10^{-6} M) and endothelium-independent vasodilators detaNONOate (10^{-8} to 10^{-4} M) and isoproterenol (10^{-9} to 10^{-5} M) were comparable in the two types of preparations (Table 1). The reference contractions to high potassium were comparable in the different experimental groups (Table 1).

Chronic effect of pyrilamine on vascular responsiveness. After chronic in vivo treatment with pyrilamine (2 mg·kg^{-1}·day^{-1}, 28 days), the coronary arterial preparations showed no significant difference in relaxations to detaNONOate and isoproterenol (Table 1) compared with controls, those responses comparable with those obtained in the acute experiments (Table 1). The reduced relaxation to serotonin observed in the controls with regenerated endothelium was also present in previously denuded coronary rings of the pigs with chronic treatment with pyrilamine (Table 1). However, unlike in the control preparations, the relaxation to bradykinin was significantly reduced in the arteries with regenerated endothelium of the chronically pyrilamine-treated group (Fig. 1) with ~50% reduction in the area under the concentration-relaxation curves (Table 1).

Lack of effect of pyrilamine on intimal-medial thickening. The analysis of the cross-sectional area showed that intimal-medial thickening occurred in the arteries with regenerated endothelium (Fig. 2) and was not significantly affected by the chronic treatment with pyrilamine.

DISCUSSION

Bradykinin is a peptide that is part of the kallikrein-kinin system (4). It preferentially activates constitutive B_2-kinin receptors (15, 23). When endothelial B_2 receptors are activated, G_{q} protein coupling to the phospholipase C pathway increases the intracellular calcium concentration, the phosphorylation of endothelial NO synthase (eNOS), and thus the

Fig. 1. Chronic effects of vehicle [control (top); data from Chan et al. (6), used with permission], pyrilamine [2 mg·kg^{-1}·day^{-1} (bottom)] on the relaxation to bradykinin (10^{-10} to 10^{-6} M) in porcine coronary arterial rings with native or regenerated endothelium. The concentration-relaxation curves are expressed as percentage of the precontraction to U46619 (3 × 10^{-6} M) and are shown as means ± SE; n = 5 to 6. *P < 0.05, native vs. regenerated.

Fig. 2. Cross-sectional area (in cm²) of the intima-medial layer of porcine coronary arteries with native or regenerated endothelium after chronic treatment for 28 days with vehicle (control) and pyrilamine (2 mg·kg^{-1}·day^{-1}).

* A: representative pictures of the arteries stained with modified Curtis’s Ponceau.
*B: quantification of the cross-sectional area of the intima-medial layer in the different treatment groups. The data are shown as means ± SE; n = 5 to 6. *P < 0.05, native vs. regenerated. Data from Chan et al. (6), used with permission.
production of NO. In addition, the increase in calcium also stimulates phospholipase A2 and the downstream release of vasodilator prostaglandins, as well as it initiates endothelium-dependent hyperpolarizations (9, 18). In hypertensive patients taking angiotensin-converting enzyme inhibitors, the bradykinin level is shown to be increased because of the reduced hydrolysis of the peptide itself; studies also demonstrated potentiating effects independent of the hydrolysis aspects (32). This further enhances the importance of this pathway in the hypertensive subjects.

Coronary arteries with regenerated endothelium maintain a normal responsiveness to bradykinin, implying that G_{q} protein coupling is unaltered by the regeneration process (6, 25, 26). The current results demonstrate a major reduction in the relaxations to this peptide in rings with regenerated but not native endothelium of animals treated chronically with the H_{1} antagonist pyrilamine. Such depression was not observed upon in vitro administration of the compound, ruling out a persistent pharmacological effect from the treatment. The lack of effects of the treatment with pyrilamine on the relaxation to the endothelium-independent NO donor detaNONOate demonstrates that the effect of pyrilamine is limited to the endothelium and not on the vascular smooth muscle cells. Hence, the present findings strongly suggest a beneficial role for endogenous histamine in the maintenance of a normal response to bradykinin in regenerated endothelium.

In endothelial cells histamine activates H_{1} receptors with a diverse range of effects. Acutely, activation of H_{1} receptors initiates endothelium-dependent relaxations of human internal mammary arteries (39) and can release prostacyclin (which causes vasodilatation and prevents platelet aggregation) from human umbilical vein (2) and human coronary artery (22) endothelial cells. Upon the activation of H_{1} receptors, histamine upregulates eNOS expression through the calcium/calmodulin-dependent protein kinase II pathway (14). In addition, histamine stimulates the expression of eNOS and cyclooxygenase-1 and releases vasoactive molecules such as prostaglandin E2 (30). In rats, histamine attenuates lipopolysaccharide-stimulated phospholipase A2 and the downstream release of prostacyclin. Hence, the present findings strongly suggest a beneficial role for endogenous histamine in the maintenance of a normal response to bradykinin in regenerated endothelium.

In endothelial cells histamine activates H_{1} receptors with a diverse range of effects. Acutely, activation of H_{1} receptors initiates endothelium-dependent relaxations of human internal mammary arteries (39) and can release prostacyclin (which causes vasodilatation and prevents platelet aggregation) from human umbilical vein (2) and human coronary artery (22) endothelial cells. Upon the activation of H_{1} receptors, histamine upregulates eNOS expression through the calcium/calmodulin-dependent protein kinase II pathway (14). In addition, histamine stimulates the expression of eNOS and cyclooxygenase-1 and releases vasoactive molecules such as prostaglandin E2 (30). In rats, histamine attenuates lipopolysaccharide-induced liver injury (19). By contrast, chronic treatment with pyrilamine is correlated with an increased incidence of inflammation (10). The present findings do not permit us to speculate further concerning the identity the specific beneficial endothelial effect(s) of histamine counteracted by the chronic exposure to pyrilamine in regenerated endothelium, explaining the blunting of the endothelium-dependent relaxation to bradykinin. For example, a chronic reduction in the production of protective endothelium-derived mediators (NO and prostacyclin) would be expected not only to blunt the relaxation to bradykinin but also to cause further deterioration of the response to serotonin, which was not the case.

By contrast to bradykinin, the response to serotonin was significantly reduced to the same extent in preparations with regenerated endothelium of the control group (6) and in those of animals treated chronically with pyrilamine, indicating that the G_{q} protein-mediated pathway is not affected by H_{1} receptor blockade. Previous findings concluded that the decrease in relaxation to serotonin is due mainly to reduced activity rather than a reduced protein level of G_{q} proteins to induce activation of the eNOS (3, 24). The lack of effect of pyrilamine on serotonin-induced relaxation is compatible with a selective modulation of G_{q}-mediated responses by endogenous histamine.

Despite the fact that H_{1} receptor activation augments the expression of early growth response factor-1 [a transcription factor responsible for proliferation of smooth muscle cell (37)], the present histological analysis showed no significant effects of the histamine receptor H_{1} inhibitor on the intima-medial thickening caused by the denudation of endothelium. This then suggests a lack of involvement of endogenous histamine in the thickening process caused by endothelial regeneration. The lack of worsening by pyrilamine of the intima-medial thickening resulting from the denudation procedure also implies that the preservation of a normal response to bradykinin, unlike that to serotonin (6), does not protect the coronary wall against intimal-medial thickening in untreated animals, suggesting a minimal role for the peptide and G_{q}-coupled activation of eNOS under normal conditions.

The present findings demonstrate that key relaxation pathways in vascular smooth muscle, due to the production of either cGMP or cAMP (20, 40), are preserved in preparations with regenerated endothelium. This is the case whether or not the smooth muscle cells are exposed (acutely or chronically) to pyrilamine, as indicated by the lack of differences in the response to detaNONOate and isoproterenol, respectively. The present results thus confirm that the function of the underlying vascular smooth muscle cells is not affected majorly by the endothelial regeneration process (25, 27) and demonstrate that the treatment of pyrilamine does not affect it either.

Conclusion. The present results suggest that the G_{q} protein-mediated endothelium-dependent relaxations, which remain unchanged in regenerated endothelium, are reduced by a chronic treatment with pyrilamine. Thus endogenous histamine may exert a protective role in the vascular wall.

ACKNOWLEDGMENTS

We thank Chung Yee Har for assistance in the tissue collection and effort throughout the investigation.

GRANTS

This research was supported by Research Grant Council of the Hong Kong Special Administrative Region Grants HKU77728M and HKU4/crf10/10, and Ministry of Education, Science and Technology (South Korea) World Class University Program Grant R31-20029.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

C.K.Y.C., A.X., H.-F.T., and P.M.V. conception and design of research; C.K.Y.C., S.-Y.L., and Y.L.Z. performed experiments; C.K.Y.C. and P.M.V. conception and design of research; H.-F.T., and P.M.V. conception and design of research; C.K.Y.C., S.-Y.L., Y.L.Z., A.X., H.-F.T., and P.M.V. assisted in data analysis; C.K.Y.C., A.X., H.-F.T., and P.M.V. assisted in manuscript preparation; C.K.Y.C., A.X., H.-F.T., and P.M.V. conceived and designed the research; C.K.Y.C., A.X., H.-F.T., and P.M.V. wrote the paper.

REFERENCES

