Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release

Xiao Wang, Seth H. Weinberg, Yan Hao, Eric A. Sobie, and Gregory D. Smith
1Department of Applied Science, The College of William and Mary, Williamsburg, Virginia; 2Department of Mathematics and Computer Science, The Hobart and William Smith Colleges, Geneva, New York; and 3Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York

Submitted 2 May 2014; accepted in final form 4 December 2014

Wang X, Weinberg SH, Hao Y, Sobie EA, Smith GD. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release. Am J Physiol Heart Circ Physiol 308: H510–H523, 2015. First published December 5, 2014; doi:10.1152/ajpheart.00296.2014. —Population density approaches to modeling local control of Ca2+ release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca2+ signals. Unfortunately, the computational complexity of such “local/global” whole cell models scales with the number of Ca2+ release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca2+ concentration ([Ca2+]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca2+ homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic spontaneous release decreases SR [Ca2+] and promotes Ca2+-induced Ca2+ release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca2+ signals. Unfortunately, the computational complexity of such “local/global” whole cell models scales with the number of Ca2+ release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca2+ concentration ([Ca2+]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca2+ homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca2+] promotes elevated network sarcoplasmic reticulum (SR) [Ca2+] via SR Ca2+-ATPase-mediated Ca2+ uptake. However, elevated myoplasmic [Ca2+] may also activate RyRs and promote stochastic SR Ca2+ release, which can in turn decrease SR [Ca2+]. Increasing myoplasmic [Ca2+] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca2+] depending on whether myoplasmic [Ca2+] is low or high. In the later case, spontaneous release decreases SR [Ca2+] in a manner that maintains robust Ca2+ sparks.

Langevin equation; Fokker-Planck equation; calcium release site; multiscale whole cell model; calcium homeostasis

Intracellular calcium (Ca2+) signaling involves a complex interplay between global (cell-wide) changes in Ca2+ concentration ([Ca2+]) and local (subcellular) Ca2+ release events. Local signals are caused by plasma membrane Ca2+ influx and release of Ca2+ from intracellular stores, primarily the endoplasmic/sarcoplasmic reticulum (ER/SR). Spatially localized Ca2+ release events mediated by clusters of intracellular Ca2+ channels, IP\textsubscript{3} receptors (IP\textsubscript{3}Rs) or ryanodine receptors (RyRs) on the ER/SR membrane, are referred to as “Ca2+ sparks” or “puffs” (see Ref. 2 for review).

While plasma membrane ion channels in a small cell experience essentially the same time course of membrane voltage, intracellular Ca2+ channels experience radically different local [Ca2+], even during global Ca2+ responses, and clusters of IP\textsubscript{3}Rs and RyRs are in fact only locally coupled via the buffered diffusion of intracellular Ca2+. That is, when one or several of the channels in a Ca2+ release unit (CaRU) are open, the [Ca2+] experienced by spatially localized channels is dramatically different from the [Ca2+] in the bulk myoplasm. For this reason, conventional whole cell modeling of Ca2+ dynamics based on Hodgkin-Huxley-like gating variables for the dynamics of intracellular channels is not always appropriate.

Mechanistic models of ER/SR Ca2+ release often represent the stochastic gating of Ca2+ channels using Monte Carlo methods. When these approaches are applied to cardiac myocytes, voltage-gated L-type Ca2+ channel(s) interact with a cluster of RyRs through changes in [Ca2+] in small “dyadic subspaces” between the sarcolemmal and SR membranes. These models also sometimes consider depletion of junctional SR [Ca2+] that may influence Ca2+ spark termination and refractoriness (31, 32, 35). Realistic global (cell-wide) SR Ca2+ release can be reproduced by Monte Carlo simulation of the stochastic triggering of sparks from hundreds to thousands of CaRUs (19, 20, 29, 32). However, such simulations of local control of excitation-contraction coupling are computationally demanding, especially when each CaRU is composed of interacting Markov chain models of individual RyRs (e.g., see Ref. 23).

Population density approaches are an alternative to Monte Carlo simulations that produce realistic and computationally efficient models by using a master equation to represent heterogeneous local Ca2+ signals in dyadic subspaces and junctional SR domains (37). This approach involves the numerical solution of advection-reaction equations for the time-dependent bivariate probability density of subspace and junctional SR [Ca2+] conditioned on CaRU state, coupled to ordinary differential equations (ODEs) for the bulk myoplasmic and network SR [Ca2+]. This methodology was validated in prior work (37) and an associated moment-based approach to simulating the probability distribution of junctional SR [Ca2+] was benchmarked to be several orders of magnitude faster than conventional Monte Carlo simulation of the dynamics of local Ca2+ associated with a physiological number of CaRUs (38).

One disadvantage of the population density approaches to modeling local control is that their run times (computational efficiency) are proportional to the number of CaRU states. When realistically modeled as the collective gating of identical

Address for reprint requests and other correspondence: G. D. Smith, Dept. of Applied Science, McGlothlin-Street Hall, Rm. 305, The College of William and Mary, Williamsburg, VA 23187 (e-mail: greg@as.wm.edu).

Copyright © 2015 the American Physiological Society http://www.ajpheart.org

HS10 0363-6135/15
and indistinguishable RyRs, the number of CaRU states is exponential in the number of channel states. Population density and moment-based methods for multiscale (i.e., local/global) whole cell modeling are limited by this state-space explosion.

Here we present an alternative local/global whole cell modeling approach based on a Langevin formulation of the stochastic Ca\(^{2+}\) release via CaRUs. We assume that the number of RyRs per CaRU is large enough that the fraction of channels in each state can be treated as a continuous variable. We show that the Langevin description of the collective gating of RyRs is a good approximation to the corresponding discrete-state continuous-time Markov chain model when the number of RyRs per release site is in the physiological range. By coupling the numerical solution of such Langevin equations to balance equations for the bulk myoplasmic and network SR [Ca\(^{2+}\)], a local/global whole cell model is produced whose run time scales with the number of states in the Markov chain model for an individual RyR, as opposed to the far greater number of states in a compositionally defined CaRU. When the RyR model is minimal, these Langevin equations may be replaced by a single Fokker-Planck equation for a randomly sampled CaRU, yielding an extremely compact and efficient local/global whole cell model. We illustrate the usefulness and computational efficiency of the Fokker-Planck equation-based local/global whole cell model by performing parameter studies motivated by recent experiments (3, 40).

In intact ventricular myocytes of the healthy heart, the balance of diastolic SR Ca\(^{2+}\) leak and uptake maintains the appropriate SR Ca\(^{2+}\) load. While the SR Ca\(^{2+}\) leak is mediated primarily by RyRs, the contributions of spark- and nonspark-mediated SR Ca\(^{2+}\) release depend on the concentration of both myoplasmic and SR [Ca\(^{2+}\)] (10, 27, 30, 40). When SR [Ca\(^{2+}\)] is low, SR Ca\(^{2+}\) leak occurs primarily through spark-independent pathways. Conversely, when SR [Ca\(^{2+}\)] is high, spontaneous Ca\(^{2+}\) sparks make a large contribution to SR leak. In pathophysiological conditions that include SR Ca\(^{2+}\) overload, increased SR Ca\(^{2+}\) leak may generate spontaneous sparks that trigger Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) from neighboring CaRUs, thereby initiating arrhythmogenic spontaneous Ca\(^{2+}\) waves (9).

With the use of permeabilized ventricular myocytes, a reduced experimental preparation that allows precise control of myoplasmic [Ca\(^{2+}\)], Bovo et al. (3) observed that increasing myoplasmic [Ca\(^{2+}\)] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release. These results are reproduced by the Fokker-Planck equation-based local/global whole cell model that is the focus of this article. In addition, the model predicts potentially significant characteristics of Ca\(^{2+}\) homeostasis in permeabilized cells. For example, in the local/global whole cell model, two distinct steady states may exist for a given network SR [Ca\(^{2+}\)]. One steady-state corresponds to low myoplasmic [Ca\(^{2+}\)] and small SR Ca\(^{2+}\) release flux that is dominated by stochastic leak, while the other corresponds to high myoplasmic [Ca\(^{2+}\)] and large release flux mediated by Ca\(^{2+}\) sparks. Interestingly, for any clamped myoplasmic [Ca\(^{2+}\)] that is large enough to trigger spark-mediated release, the local/global model predicts that the resulting spontaneous stochastic Ca\(^{2+}\) release tends to decrease the network SR Ca\(^{2+}\) load just enough to maintain robust Ca\(^{2+}\) sparks.

METHODS

Markov chain description of a Ca\(^{2+}\) release site. The most straightforward starting point for the presentation of the Langevin description of a Ca\(^{2+}\) release site (CaRU) is the following two-state Markov chain model of a stochastically gating RyR,

\[
\text{(closed) } C \xleftrightarrow{k^-} \text{(open) } O,
\]

where \(c\) is the local [Ca\(^{2+}\)], \(k^-c\) and \(k^-\) are transition rates with units of reciprocal time, \(k^+\) is an association rate constant with units of concentration^-time^-1, and \(\eta\) is the cooperativity of Ca\(^{2+}\) binding. Under the assumption that a collection of \(N\) two-state RyRs are instantaneously coupled by a local [Ca\(^{2+}\)] associated with the RyR cluster, the transition diagram for the CaRU as a collective entity is

\[
\begin{align*}
0 & \xrightarrow{k^-} 1 & \text{ \(c\) \xrightarrow{k^-} \(N - 1\) \xrightarrow{k^-} 0} \\
1 & \xrightarrow{c \cdot t} N & 0 \\
N & \xrightarrow{c \cdot t} 0 & \text{ \(c\) \xrightarrow{k^-} \(N - 1\) \xrightarrow{k^-} 0} \\
\end{align*}
\]

where the states \(\{0, 1, \ldots, N\}\) correspond to the number of open channels (\(N_O\)) and \(c_o\) is the local [Ca\(^{2+}\)] experienced by RyRs when \(N_O = n\).

Figure 1A shows a Markov chain simulation of a CaRU composed of \(N = 20\) two-state channels. For simplicity we here assume that the local [Ca\(^{2+}\)] is a linear function of \(N_O\), that is,

\[
c_o = c_o + nc_c,
\]

where \(c_o\) is the bulk or background [Ca\(^{2+}\)] and \(c_c\) determines the increment in local [Ca\(^{2+}\)] following an individual RyR opening. The corresponding relationship between \(N_O\) and local [Ca\(^{2+}\)] is more realistic in the local/global whole cell model (Eqs. 24 and 25).

Langevin Ca\(^{2+}\) release site model. We will write \(f_o(t)\) as the time-varying fraction of open RyRs, that is,

\[
f_o(t) = \frac{N_O(t)}{N}.
\]

The Langevin equation that corresponds to a CaRU composed of \(N\) two-state channels (see above) is a stochastic ordinary differential equation (SDE) of the form

\[
df_o \over dt = k^+(c_o + \bar{c}f_o)(1 - f_o) - k^-f_o + \xi(t),
\]

where \(\bar{c} = Nc_c\) and \(\xi(t)\) is a rapidly varying forcing term (Gaussian white noise) with zero mean

\[
\langle \xi(t) \rangle = 0.
\]

As discussed in Appendix A, the magnitude of the noise term, \(\xi(t)\), is characterized by the two-time covariance (16, 26),

\[
\langle \xi(t)\xi(t') \rangle = \gamma(f_o)\delta(t - t'),
\]

where \(\delta\) is the Dirac delta function and \(\gamma(f_o)\) is the infinitesimal variance of \(f_o\) and is given by

\[
\gamma(f_o) = k^+(1 - f_o) + k^-f_o.
\]

With the use of parameters that lead to Ca\(^{2+}\) sparks, Fig. 1B shows that the Langevin simulation of a 20-channel CaRU is qualitatively similar to the corresponding Markov chain simulation (Fig. 1A).

Equivalence of Markov chain and Langevin formulations. The Langevin CaRU model is expected to well approximate the Markov chain model when the number of RyRs per CaRU (\(N\)) is sufficiently large. To determine whether this convergence occurs for a physiological number of RyRs (10–200 per CaRU in skeletal and cardiac myocytes; Ref. 11), we compare the stationary distributions for \(N_O\).
Fig. 1. Comparison and agreement of the Ca\(^{2+}\) release site model using Markov chain and Langevin formulation. A: Markov chain simulation of 20 two-state ryanodine receptors (RyRs) coupled via local Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) (Eq. 2) using Gillespie’s stochastic simulation algorithm (17). B: Langevin simulation obtained by numerically integrating Eqs. 3–8 using the Euler-Maruyama method (15). C: stationary distribution of the Markov chain (calculated analytically, Eq. 2, white histogram) and the binned (discretized) probability distribution for the Langevin formulation (calculated from simulations, black histogram) and Fokker-Planck equation (calculated analytically, Eq. 14, + symbols). D: stationary distribution of the Langevin model (black histogram) shows that the SDE formulation is a good approximation to the Markov chain, even when the number of RyRs per CaRU is on the low end of the physiological range.

In the Langevin CaRU formulation, the state space for \(f_0\) is continuous (0 \(\leq f_0 \leq 1\)). The Fokker-Planck equation solved by the probability density function for the fraction of open channels, \(\rho(f, t)\), is given by (12)

\[
\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial f} [\alpha \rho] + \frac{1}{2} \frac{\partial^2}{\partial f^2} [\gamma \rho]
\]

where \(\rho(f, t)\) is the random variable and \(f\) is the independent variable of the probability density. The drift and diffusion terms in Eq. 9 are given by

\[
\alpha(f) = v^+ - v^-, \quad \gamma(f) = (v^+ + v^-)/N,
\]

where \(v^\pm(f)\) are the rates of the elementary processes leading to an increase and decrease in the fraction of open channels, that is,

\[
v^+(f) = k^+(c_N + c) \gamma(1 - f), \quad v^-(f) = k^- f,
\]

and \(c = c_N\) as above (Eq. 5).

Setting the left-hand side of Eq. 9 equal to zero (\(\partial \rho/\partial t = 0\)), denoting the stationary density by \(\rho_s(f)\) and applying boundary conditions \(\rho_s(f) \rightarrow 0\) as \(f \rightarrow \pm \infty\), it can be shown that (12)

\[
\rho_s(f) = \frac{\theta}{\gamma} \exp[2U]
\]

where \(\theta\) is a normalization constant such that \(\int \rho_s(f) df = 1\) and

\[
U(f) = \int_0^f \frac{\alpha(f')}{\gamma(f')} df'
\]

is an accumulation function with a lower limit of integration satisfying \(\alpha(f')/\gamma(f) = 0\) for \(f \leq a\). In fact, \(U\) may be any antiderivative satisfying \(U' = \alpha/\gamma\), because the normalization of \(\rho_s\) determines the constant of integration.

Figure 1D shows the stationary density \(\rho_s(f)\) for the 20-channel Fokker-Planck CaRU model described above. The + symbols in Fig. 1C are binned values of \(\rho_s(f)\) that may be compared with (and agree with) the stationary distributions of the Markov chain (white histogram) and Langevin (black histogram) descriptions. APPENDIX B provides more comparisons of Markov chain, Langevin, and Fokker-Planck CaRU simulations.

Full local/global whole cell model. Having validated the Langevin CaRU model in the previous sections, we are prepared to construct the local/global whole cell model of Ca\(^{2+}\) homeostasis in permeabilised ventricular myocytes that is the focus of this article. Figure 2 shows the relationship between the bulk Ca\(^{2+}\) concentrations of the myoplasm (\(c_{\text{myo}}\)) and the network SR (\(c_{\text{nex}}\)) and the local Ca\(^{2+}\) concentrations associated with each CaRU. With respect to global aspects of Ca\(^{2+}\) signaling, the material balance equations of the whole cell model are

\[
\frac{dc_{\text{myo}}}{dt} = J_{\text{myo}} - J_{\text{pump}} + J_{\text{pm}}
\]

\[
\frac{dc_{\text{nex}}}{dt} = \frac{1}{\Lambda_{\text{nex}}} (-J_{\text{nex}} + J_{\text{pump}})
\]

where \(\Lambda_{\text{nex}}\) is an effective volume ratio that accounts for both physical volume and Ca\(^{2+}\) buffering capacity of the myoplasm and network SR. A plasma membrane flux may take the form \(J_{\text{pm}} = k_{\text{pm}}(c_{\text{ext}} - c_{\text{myo}})\). The sarco(endo)plasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) type Ca\(^{2+}\)-ATPase flux is (37)

\[
J_{\text{pump}} = v_{\text{pump}} \left(\frac{c_{\text{myo}}}{K_{f_1}}\right)^{\eta_s} - \left(\frac{c_{\text{nex}}}{K_{f_1}}\right)^{\eta_s}
\]

\[
J_{\text{pump}} = v_{\text{pump}} \left(\frac{c_{\text{myo}}}{K_{f_1}}\right)^{\eta_s} - \left(\frac{c_{\text{nex}}}{K_{f_1}}\right)^{\eta_s}
\]

\[
J_{\text{pump}} = v_{\text{pump}} \left(\frac{c_{\text{myo}}}{K_{f_1}}\right)^{\eta_s} - \left(\frac{c_{\text{nex}}}{K_{f_1}}\right)^{\eta_s}
\]

\[
J_{\text{pump}} = v_{\text{pump}} \left(\frac{c_{\text{myo}}}{K_{f_1}}\right)^{\eta_s} - \left(\frac{c_{\text{nex}}}{K_{f_1}}\right)^{\eta_s}
\]
The aggregate fluxes \(J_{\text{myo}}^m = \sum_{m=1}^{M} J_{\text{myo}}^m \) and \(J_{\text{nsr}}^m = \sum_{m=1}^{M} J_{\text{nsr}}^m \) in Eqs. 16 and 17 account for the stochastic dynamics of Ca\(^{2+}\) release, where \(J_{\text{myo}}^m = \nu_{\text{myo}}(c_{\text{myo}}^m - c_{\text{myo}}) \) with \(\nu_{\text{myo}} = \nu_{\text{myo}}/M \) is the flux from the \(m \)\(\text{th} \) dyadic subspace into the bulk myoplasm and \(J_{\text{nsr}}^m = \nu_{\text{nsr}}(c_{\text{nsr}} - c_{\text{nsr}}^m) \) where \(\nu_{\text{nsr}} = \nu_{\text{nsr}}/M \) is the flux from the network SR to the \(m \)\(\text{th} \) junctional SR (\(m = 1, 2, \ldots, M \)). See Table 1 for parameters.

Each CaRU in the whole cell model is a collection of \(N \) RyRs with open fraction \(f_0^m \) and associated dyadic subspace (\(c_{\text{myo}}^m \)) and junctional SR (\(c_{\text{nsr}}^m \)) Ca\(^{2+}\) concentrations:

\[
\frac{dc_{\text{myo}}^m}{dt} = \frac{1}{\lambda_{\text{myo}}}(J_{\text{rel}}^m - J_{\text{myo}}^m) \tag{19}
\]

\[
\frac{dc_{\text{nsr}}^m}{dt} = k^+(c_{\text{myo}}^m(1 - f_0^m) - k^-f_0^m + \xi^m(t)) \tag{20}
\]

where

\[
\frac{dc_{\text{myo}}^m}{dt} = \frac{1}{\lambda_{\text{myo}}}(J_{\text{rel}}^m - J_{\text{myo}}^m).
\]

In these equations, \(\lambda_{\text{myo}} \) and \(\lambda_{\text{nsr}} \) are effective volume ratios, that is, \(\lambda_{\text{myo}} = (V_{\text{myo}}/\bar{V}_{\text{myo}})(V_{\text{myo}}/\bar{V}_{\text{myo}}) \), where \(V_{\text{myo}} = V_{\text{myo}}^s/M \) and \(V_{\text{myo}}^s \) is the aggregate volume of the dyadic subspaces (similarly for \(\lambda_{\text{nsr}} \)). \(J_{\text{rel}}^m \) is the release flux through the \(m \)th RyR channel given by \(J_{\text{rel}}^m = \nu_{\text{rel}}^m(c_{\text{myo}}^m - c_{\text{myo}}^m) \) for \(m = 1, 2, \ldots, M \) and \(\nu_{\text{rel}}^m/M \). The random functions of time \(\xi^m(t) \) are independent Gaussian white noise terms with zero mean, \(\langle \xi^m(t) \rangle = 0 \) for all \(m \), and the two-time covariances are

\[
\langle \xi^m(t)\xi^{m'}(t') \rangle = \left\{ \begin{array}{ll}
0 & \text{for } m \neq m' \\
\gamma(f_0^m)\delta(t - t') & \text{for } m = m',
\end{array} \right.
\]

Myoplasmic Ca\(^{2+}\) concentration (\(c_{\text{myo}} \)) is under experimental control in permeabilized myocytes, and thus it is a parameter of the whole cell model. The effective volume ratio that accounts for Ca\(^{2+}\) buffering in Eq. 17 is given by \(\lambda_{\text{myo}} = (V_{\text{myo}}/\bar{V}_{\text{myo}})(V_{\text{myo}}/\bar{V}_{\text{myo}}) \), where \(V_{\text{myo}} \) and \(V_{\text{myo}}^s \) are the volume of network sarcoplasmic reticulum (SR) and myoplasm, respectively, and \(\nu_{\text{myo}} \) and \(\nu_{\text{myo}}^s \) are the buffer factors of network SR and myoplasm (\(c_{\text{myo}}^m \)). The bulk myoplasmic Ca\(^{2+}\) is a model parameter, as this quantity is clamped in permeabilized ventricular myocytes. Fluxes include passive exchange between network and junctional SR (\(f_{\text{nsr}}^m \)) and between dyadic subspace and myoplasm (\(f_{\text{myo}}^m \)); release fluxes between junctional SR and dyadic subspace (\(f_{\text{myo}}^m \)); SR uptake from network to network SR via SR Ca\(^{2+}\)-ATPase (SERCA) (\(f_{\text{pump}} \)); and (for intact cells) plasma membrane fluxes (\(f_{\text{pm}} \)).

Table 1. Parameters for the local/global whole cell model of calcium homeostasis in permeabilized ventricular myocytes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{\text{myo}})</td>
<td>Myoplasmic Ca(^{2+}) concentration</td>
<td>(\mu M)</td>
<td>Varied</td>
</tr>
<tr>
<td>(\lambda_{\text{myo}})</td>
<td>Effective volume ratio of network SR and myoplasm</td>
<td>—</td>
<td>1.46</td>
</tr>
<tr>
<td>(\nu_{\text{myo}}^s)</td>
<td>Rate of myoplasmic domain collapse</td>
<td>(s^{-1})</td>
<td>31.25</td>
</tr>
<tr>
<td>(\nu_{\text{myo}})</td>
<td>Rate of SR domain recovery</td>
<td>(s^{-1})</td>
<td>0.45</td>
</tr>
<tr>
<td>(\nu_{\text{rel}}^m)</td>
<td>Maximum release rate via RyRs</td>
<td>—</td>
<td>1.56</td>
</tr>
<tr>
<td>(K_{\text{f0}})</td>
<td>Forward and reverse half-saturation constant</td>
<td>(\mu M)</td>
<td>161.25</td>
</tr>
<tr>
<td>(\eta_{\text{f0}})</td>
<td>Forward and reverse cooperativity constant</td>
<td>—</td>
<td>0.17, 1702</td>
</tr>
<tr>
<td>(N)</td>
<td>Number of RyRs per CaRU</td>
<td>—</td>
<td>0.75</td>
</tr>
<tr>
<td>(k^+)</td>
<td>Association rate constant for Ca(^{2+}) binding to RyRs</td>
<td>(\mu M^{-n} s^{-1})</td>
<td>0.4</td>
</tr>
<tr>
<td>(k^-)</td>
<td>Dissociation rate constant for Ca(^{2+}) unbinding</td>
<td>(s^{-1})</td>
<td>50</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Cooperativity of Ca(^{2+}) binding to RyRs</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>(M)</td>
<td>Number of CaRUs in Langevin simulations</td>
<td>—</td>
<td>200</td>
</tr>
</tbody>
</table>

Myoplasmic Ca\(^{2+}\) concentration (\(c_{\text{myo}} \)) is under experimental control in permeabilized myocytes, and thus it is a parameter of the whole cell model. The effective volume ratio that accounts for Ca\(^{2+}\) buffering in Eq. 17 is given by \(\lambda_{\text{myo}} = (V_{\text{myo}}/\bar{V}_{\text{myo}})(V_{\text{myo}}/\bar{V}_{\text{myo}}) \), where \(V_{\text{myo}} \) and \(V_{\text{myo}}^s \) are the volume of network sarcoplasmic reticulum (SR) and myoplasm, respectively, and \(\nu_{\text{myo}} \) and \(\nu_{\text{myo}}^s \) are the buffer factors of network SR and myoplasm, respectively. The rate constants \(\nu_{\text{myo}}^s, \nu_{\text{myo}}^s \) and \(\nu_{\text{myo}}^s \) scale the fluxes between domains and bulk, given by integrals over the density function \(\mu(f) \): \(f_{\text{myo}}^m = \int_{f_0}^{1} \mu(f)c_{\text{myo}}^m(f, t) df \) and \(f_{\text{myo}}^m = \int_{f_0}^{1} \mu(f) c_{\text{myo}}^m f_{\text{myo}}^m(f, t) df \) where \(c_{\text{myo}}(f) \) and \(c_{\text{myo}}(f) \) are given by Eqs. 32 and 33. The flux via SR Ca\(^{2+}\) -ATPase (SERCA) is governed by \(\nu_{\text{pump}} \), \(K_{\text{f0}}, K_{\text{f0}}, \eta_{\text{f0}} \), and \(\eta_{\text{f0}} \) (Eq. 18). Ca\(^{2+}\) activation and dissociation of the 2-state ryanodine receptor (RyR) channel model are governed by \(k^+, k^- \), and \(\eta \) (Eq. 1). The number of Ca\(^{2+}\) release units (CaRUs; \(M \)) in the Fokker-Planck formulation is large but unspecified.

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00296.2014 • www.ajpheart.org
Note that the dyadic subspaces only influence each other through the bulk concentrations \(c_{\text{myo}}\) and \(c_{\text{nsr}}\). Below we refer to Eqs. 16–23 as the “full local/global whole cell model.”

Reduced local/global whole cell model. The Langevin description of each CaRU (Eqs. 19–21) in the full local/global model may be simplified by assuming that the dyadic subspace and junctional SR rapidly equilibrate with the bulk myoplasmic and network SR [\(\text{Ca}^{2+}\)], that is, \(J_{\text{myo}} = J_{\text{nsr}} = J_{\text{rel}}\). These balanced fluxes relate the 2M domain \(\text{Ca}^{2+}\) concentrations, \(c_{\text{myo}}\) and \(c_{\text{nsr}}\), to the bulk concentrations, \(c_{\text{myo}}\) and \(c_{\text{nsr}}\), and the fraction of open channels \(f_{\text{on}}\) in the mth CaRU as follows (22),

\[
\begin{align*}
\bar{c}_{\text{myo}}^m &= (1 - \chi_{\text{myo}})c_{\text{myo}} + \chi_{\text{myo}}c_{\text{nsr}} \\
\bar{c}_{\text{nsr}}^m &= \chi_{\text{myo}}c_{\text{myo}} + (1 - \chi_{\text{myo}})c_{\text{nsr}}
\end{align*}
\]

where \(\chi_{\text{myo}}^m = \frac{v_{\text{myo}}}{v_{\text{myo}} + v_{\text{myo}}^m}\) and \(\chi_{\text{nsr}}^m = \frac{v_{\text{myo}} + v_{\text{myo}}^m}{v_{\text{myo}} + v_{\text{myo}}^m}\). Equations 24 and 25 eliminate 2M of the 3M ODEs representing the population of \(M\) CaRUs, with the remaining ODEs,

\[
\frac{df_{\text{on}}}{dt} = k^+(\bar{c}_{\text{myo}}^m)/(1 - f_{\text{on}}^m) - k^-f_{\text{on}}^m + \xi(t),
\]

dependent on the rapidly equilibrated dyadic subspace concentration \(\bar{c}_{\text{myo}}^m\) that is an algebraic function of \(f_{\text{on}}\), \(c_{\text{myo}}\), and \(c_{\text{nsr}}\). Realizations of this “reduced local/global whole cell model” are obtained by numerically integrating Eqs. 16, 17, and 26.

Fokker-Planck local/global whole cell model. The full and reduced local/global whole cell models presented above include heterogeneous local \(\text{Ca}^{2+}\) signaling and stochastic \(\text{Ca}^{2+}\) release. Unfortunately, a physically realistic ventricular myocyte simulation would involve \(M\approx 20,000\) CaRUs (6). Rather than perform Monte Carlo simulations with a less, unphysiological value for \(M\) that is computationally feasible, we recognize that a Fokker-Planck equation similar to Eq. 9 is the master equation for a CaRU and its associated domains. Because the \(M\) CaRUs in the whole cell model are identical and independent except for fluxes to and from the bulk myoplasm and network SR, we replace the \(M\) SDEs representing these CaRUs (Eq. 26) with this Fokker-Planck equation (a good approximation for large \(M\) that is exact as \(M \to \infty\)). In this way, we obtain the “Fokker-Planck local/global whole cell model.”

In the study of \(\text{Ca}^{2+}\) homeostasis in permeabilized ventricular myocytes presented below, the governing equations are Eqs. 9, 16, and 17, with the fluxes \(J_{\text{myo}}^m\) and \(J_{\text{rel}}^m\) redefined as functions of the probability distribution function for \(f_{\text{on}}\) in a randomly sampled CaRU. In permeabilized myocytes, the bulk myoplasmic \(\text{Ca}^{2+}\) is clamped (\(k_{\text{on}}\) is large) and \(c_{\text{myo}} \approx c_{\text{ext}}\) is no longer a variable but a parameter. Consequently, Eq. 16 is superfluous and the governing equations for the Fokker-Planck equation description of the local/global model of permeabilized ventricular myocytes are therefore given by

\[
\begin{align*}
\frac{dc_{\text{nsr}}}{dt} &= -\frac{J_{\text{nsr}}}{k_{\text{nsr}}} + J_{\text{pump}} \\
\frac{\partial P}{\partial t} &= -\frac{\partial}{\partial t}(\exp) + \frac{1}{2}\frac{\partial^2}{\partial y^2}(\exp)
\end{align*}
\]

where

\[
J_{\text{nsr}}(t) = v_{\text{nsr}}^T \int (c_{\text{nsr}} - \bar{c}_{\text{nsr}}) \rho(f, t) df.
\]

In Eq. 28, \(\alpha(f)\) and \(\gamma(f)\) are given by Eqs. 10 and 11, with

\[
\begin{align*}
v^+ &= k^+\bar{c}_{\text{myo}}(1 - f) \\
v^- &= k^-f
\end{align*}
\]

The equilibrated domain concentrations are given by

\[
\begin{align*}
\bar{c}_{\text{myo}} &= [(1 - \chi_{\text{myo}})c_{\text{myo}} + \chi_{\text{myo}}c_{\text{nsr}}] \\
\bar{c}_{\text{nsr}} &= [\chi_{\text{myo}}c_{\text{myo}} + (1 - \chi_{\text{myo}})c_{\text{nsr}}]
\end{align*}
\]

where \(\chi_{\text{myo}}\) and \(\chi_{\text{nsr}}\) are the following functions of \(f\),

\[
\begin{align*}
\chi_{\text{myo}} &= \frac{v_{\text{myo}}^T}{v_{\text{myo}} + v_{\text{myo}}^T} \\
\chi_{\text{nsr}} &= \frac{v_{\text{myo}} + v_{\text{myo}}^T}{v_{\text{myo}} + v_{\text{myo}}^T}
\end{align*}
\]

and \(v_{\text{myo}}^T = v_{\text{myo}}(f)\) (cf. Eqs. 24 and 25). In the local/global whole cell model calculations presented below, the Fokker-Planck equation was numerically integrated using a total variation diminishing scheme (37), with boundary conditions as described in APPENDIX C.

RESULTS

Calcium homeostasis in the local/global whole cell model. We use the Fokker-Planck version of the reduced local/global model (Eqs. 27–33) to investigate \(\text{Ca}^{2+}\) homeostasis in permeabilized ventricular myocytes, in particular, the influence of \(c_{\text{myo}}\) on SR \(\text{Ca}^{2+}\) load and release. The relationship between \(c_{\text{myo}}\) and \(\text{Ca}^{2+}\) homeostasis is complex, as \(c_{\text{myo}}\) can promote lowered \(c_{\text{nsr}}\) through increased SERCA uptake. On the other hand, a sufficiently elevated \(c_{\text{nsr}}\) also promotes \(\text{Ca}^{2+}\) sparks that may deplete the network SR (i.e., decrease \(c_{\text{nsr}}\)).

With the use of an intermediate value for the myoplasmic \([\text{Ca}^{2+}]\) \(c_{\text{myo}} = 0.18\ \mu\text{M}\) in the permeabilized ventricular myocyte model, Fig. 3A shows the bimodal steady-state probability density function for the fraction of open channels, \(p_{\text{on}}(f)\), calculated via the Fokker-Planck version of the whole cell model (solid line). This bimodal density reflects the dynamics of CaRUs composed of RyRs that are usually closed but occasionally open in a concerted fashion. For comparison, Fig. 3A also shows a (nearly identical) estimate of the steady-state density function obtained from a whole cell model with the corresponding Langevin description of \(M = 200\) release sites (dashed curve). Figure 3B compares the stationary distribution for a whole cell model that uses a Markov chain description of release sites (white bars) and the corresponding distribution calculated via the Fokker-Planck version of the model (appropriately discretized). The two histograms are qualitatively identical and in strong qualitative agreement (the Markov chain simulation is slightly shifted to larger \(f_0\)), validating the minimal Fokker-Planck formulation of the local/global whole cell model (Eqs. 27–37).

With the use of the Fokker-Planck-based whole cell model, Fig. 3C shows the monotone increasing relationship between the fraction of open channels and stochastic \(\text{Ca}^{2+}\) release rate, given by \(v_{\text{rel}}(\bar{c}_{\text{jsr}} - \bar{c}_{\text{dk}})\) where \(\bar{c}_{\text{jsr}}\) and \(\bar{c}_{\text{dk}}\) are functions of \(f\) (Eqs. 32 and 33). Figure 3D shows the steady-state release flux density, given by \(v_{\text{rel}}(\bar{c}_{\text{jsr}} - \bar{c}_{\text{dk}})P_{\text{on}}\), that is, the product of the curves in Fig. 3, A and C. Note that the steady-state release flux density is also a bimodal function of \(f\), with the first and second modes corresponding to nonspark-mediated (light gray area, \(f < 0.1\)) and spark-mediated stochastic \(\text{Ca}^{2+}\) release (dark gray area, \(f \geq 0.1\)), respectively.

Figure 4 shows steady-state values for total release flux \(J_{\text{rel}}^T\), network SR \([\text{Ca}^{2+}]\) \(c_{\text{nsr}}\), and the spark **Score** as a
function of c_{myo} obtained from simulation of the local/global model using the Langevin (+ symbols) and Fokker-Planck (solid lines) descriptions of the CaRU population. The spark Score is the index of dispersion of the fraction of open channels \(f_0 \),

\[
\text{Score} = \frac{\text{Var}[f_0]}{\text{E}[f_0]},
\]

where \(\text{E}[f_0] = \int f_0 df, \text{Var}[f_0] = \int (f - \text{E}[f_0])^2 df \), and \(\rho_{ss}(f) \) is the steady-state probability density of open channels. The spark Score takes values between 0 and 1, and a Score greater than \(\sim 0.25 \) indicates the presence of robust \(\text{Ca}^{2+} \) sparks (21). Over a wide range of c_{myo} values, there is agreement among \(J_{rel}^{f} \), \(c_{srr} \), and the spark Score calculated using the Langevin and Fokker-Planck approaches, validating the use of the Fokker-Planck version of the model and our implementation of both methods. Note that \(J_{rel}^{f} \) is a monotonically increasing function of c_{myo} (Fig. 4A), while \(c_{srr} \) is bimodal, increasing for \(c_{myo} < 0.2 \) \(\mu M \) and decreasing for \(c_{myo} > 0.2 \) \(\mu M \) (Fig. 4B). The spark Score shows similar bimodal dependence on c_{myo} (Fig. 4C).

The biphasic dependence of \(c_{srr} \) and the spark Score on c_{myo} can be understood by considering the representative stochastic trajectories for the fraction of open channels in a randomly sampled CaRU in the Langevin model (Fig. 4A) or, alternatively, the steady-state population density function \(\rho_{ss}(f) \) in the Fokker-Planck model (Fig. 4C). For a low myoplasmic \([\text{Ca}^{2+}] \) (\(c_{myo} = 0.1 \) \(\mu M \)), \(\rho_{ss}(f) \) is located near \(f = 0 \), consistent with few channel openings (Fig. 4, A and C, insets). As \(c_{myo} \) increases to an intermediate value of 0.2 \(\mu M \), increased SERCA uptake elevates \(c_{srr} \) and \(\rho_{ss}(f) \) is distinctly bimodal, consistent with robust sparks and the observed increase in \(J_{rel}^{f} \) and Score. However, a further increase in myoplasmic \([\text{Ca}^{2+}] \) (\(c_{myo} = 0.6 \) \(\mu M \)) promotes tonic activation of CaRUs (as opposed to sparks, for a decreasing Score). The resulting increase in release flux (\(J_{rel}^{f} \)) depletes the network SR [\(\text{Ca}^{2+} \)] (lower values of \(c_{srr} \)) and eliminates robust sparks. APPENDIX D

Fig. 4. A–C: steady-state values for total RyR release flux \(J_{rel}^{f} \) (A), network SR [\(\text{Ca}^{2+} \)] (\(c_{srr} \); B), and spark Score (C) as a function of myoplasmic [\(\text{Ca}^{2+} \)] (\(c_{myo} \)) as calculated using the Fokker-Planck local/global whole cell model (solid black lines). The + symbols indicate the average across 10 simulations, each 20 s in duration, of the Langevin version of the model (with \(M = 200 \) CaRUs). Insets: sample trajectories from the Langevin model (A) and the steady-state population density function \(\rho_{ss}(f) \) from the Fokker-Planck model (C), respectively, for \(c_{myo} = 0.1, 0.2, \) and 0.6 \(\mu M \).
Figure 5. Balance between SR Ca\(^{2+}\) release and uptake at steady state. The SR Ca\(^{2+}\) release flux \(J_{rel}^{T}\) (black dashed lines) and SERCA uptake flux \(J_{pump}\) (solid gray lines) are shown as a function of a fixed (clamped) network SR [Ca\(^{2+}\)] \((c_{n csr})\) (as though \(c_{n csr}\) were a parameter) for different values of myoplasmic [Ca\(^{2+}\)] \((c_{m yo})\). Steady-state release fluxes (solid black lines) are shown as a function of clamped \(c_{n csr}\) for increasing values of \(c_{m yo}\) from 0.06 to 1.2 \(\mu\)M (arrows). Each intersection of these curves (3 open circles) indicates a steady-state release flux \(J_{rel}^{T}\) and corresponding unclamped SR Ca\(^{2+}\) load \((c_{n sr})\) solving Eqs. 27–37 for a particular \(c_{m yo}\).

provides more details regarding the influences of \(c_{m yo}\) on steady-state spark statistics.

In Fig. 5, \(J_{rel}^{T}\) (black dashed lines) and \(J_{pump}\) (solid gray lines) are shown as a function of \(c_{n sr}\) for three values of \(c_{m yo}\). \(J_{rel}^{T}\) is a monotone increasing function of \(c_{n sr}\), the increasing slope at high \(c_{m yo}\) levels is due to spark-mediated Ca\(^{2+}\) release. \(J_{pump}\) decreases approximately linearly with \(c_{n sr}\), and both \(J_{rel}\) and \(J_{pump}\) increase for \(c_{m yo}\). The intersection of the \(J_{rel}^{T}\) and \(J_{pump}\) curves (open circles) indicate the steady-state total release flux and SR Ca\(^{2+}\) load \((c_{n sr})\) for a given value of \(c_{m yo}\) (solid black line, arrow indicates increasing \(c_{m yo}\)). For a given \(c_{n sr}\), two distinct steady-states are possible, one with low \(c_{m yo}\) and \(J_{rel}\) (primarily nonspark-mediated release) and another with high \(c_{m yo}\) and \(J_{rel}\) (primarily spark-mediated release). The next section further explores the dependence of spark- and nonspark-mediated release on \(c_{m yo}\).

Spark- and nonspark-mediated SR Ca\(^{2+}\) release. In a recent experimental study, Bovo et al. (3) demonstrated that myoplasmic Ca\(^{2+}\) levels augment both spark-mediated SR Ca\(^{2+}\) release and nonspark-mediated SR Ca\(^{2+}\) release in ventricular myocytes (3). While controlling myoplasmic [Ca\(^{2+}\)] \((c_{m yo})\) by permeabilization of the cell plasma membrane, the time course of network SR [Ca\(^{2+}\)] \((c_{n sr})\) depletion was measured following application of the SERCA inhibitor thapsigargin (cf. Ref. 3, Fig. 1A). Assuming negligible SERCA activity \(\left(i.e., J_{pump} = 0\right)\), the rate of change of \(c_{n sr}\) was used as a measure of the SR Ca\(^{2+}\) release flux (see Eq. 27), and further analysis was performed to distinguish spark- and nonspark-mediated release as functions of \(c_{m yo}\) and \(c_{n sr}\). Figure 6 uses a similar protocol \(\left(set v_{pump} = 0\right)\) to elucidate the influence of \(c_{m yo}\) on spark- and nonspark-mediated release. Consistent with Bovo et al. and Fig. 4B, Fig. 6 shows that steady-state \(c_{n sr}\) increases as \(c_{m yo}\) increases from 0.12 to 0.18 \(\mu\)M (compare initial values, solid, dashed, and thick solid lines). Consistent with the experiment, increasing \(c_{m yo}\) in this range of concentrations also leads to an increased Ca\(^{2+}\) release rate, as evidenced by faster SR deple-

upon simulated block of SERCA with thapsigargin (TG in Fig. 6).

Figure 7 shows the total release flux, \(J_{rel}^{T}\), and the spark- and nonspark-mediated release \((J_{rel}^{S} and J_{rel}^{NS}\) as defined in Fig. 3C) as a function of \(c_{n sr}\) during the SR depletion simulation of Fig. 6 for different values of \(c_{m yo}\) (cf. Ref. 3, Fig. 3). While \(J_{rel}^{T}\) increases as a function of both \(c_{n sr}\) and \(c_{m yo}\) (Fig. 7A), the contributions of the spark- and nonspark-mediated release \((J_{rel}^{S} and J_{rel}^{NS}\) are highly dependent on \(c_{n sr}\). At low network SR [Ca\(^{2+}\)] \((c_{n sr})\), the spark-mediated release flux \((J_{rel}^{S}\) is negligible, but it increases exponentially as \(c_{n sr}\) increases (Fig. 7B). The nonspark-mediated release \((J_{rel}^{NS}\) is small for low \(c_{n sr}\) levels and increases as a linear function of \(c_{n sr}\) (Fig. 7C). When the SR load is clamped at \(c_{n sr} = 950 \mu\)M, both \(J_{rel}^{S}\) and \(J_{rel}^{NS}\) increase as \(c_{m yo}\) increases (Fig. 7D). However, the spark-mediated release flux \((J_{rel}^{S}\) increases to a greater extent than the nonspark-mediated release \((J_{rel}^{NS}\). Steady-state calculations of \(J_{rel}^{T}, J_{rel}^{S}, and J_{rel}^{NS}\) closely agree with time-varying simulations (Fig. 7, + symbols). In summary, when the SR is depleted, most SR Ca\(^{2+}\) release occurs via nonspark-mediated release; conversely, when the SR is replete, most SR Ca\(^{2+}\) release occurs via Ca\(^{2+}\) sparks, more so as \(c_{m yo}\) increases.

The number of RyRs per Ca\(^{2+}\) R, \(N\), can vary over a wide physiological range (11). Figure 8 shows the steady-state values for \(J_{rel}^{T}, J_{rel}^{S}, and J_{rel}^{NS}\) for different values of \(N\). As \(N\) increases (scaling \(v_{rel}\) appropriately such that \(J_{rel}^{T}\) when all \(N\) channel open is unchanged), \(J_{rel}^{T}\) becomes a steeper function of \(c_{n sr}\) (Fig. 8A). Interestingly, when the network SR [Ca\(^{2+}\)] \((c_{n sr})\) is higher \((c_{n sr} = 1,000 \mu\)M), \(J_{rel}^{T}\) is larger for larger \(N\), but when \(c_{n sr}\) is slightly lower \((c_{n sr} = 950 \mu\)M), \(J_{rel}^{T}\) is smaller for large \(N\) (Fig. 8A, arrows). Spark-mediated release \((J_{rel}^{S}\) varies with \(N\) in a manner similar to \(J_{rel}^{T}\) (Fig. 8B), while nonspark-mediated release \((J_{rel}^{NS}\) generally decreases as \(N\) increases (Fig. 8C).

Figure 9 shows how steady-state probability density function, \(\rho_{ss}(f)\), and the release flux density function, \(v_{rel}/(C_{j n sr} - C_{f ss})\), depend on the number of RyRs per release site \((N)\) when the total release rate \(v_{rel}\) is fixed \(\left(i.e., MN is a constant\right)\). For network SR [Ca\(^{2+}\)] \((c_{n sr} = 950 \mu\)M (Fig. 9A), a larger number of channels per Ca\(^{2+}\) R \((N)\) decreases the “diffusion” term (channel gating fluctuations) in Eq. 11 and both spark-
and nonspark-mediated SR Ca\(^{2+}\) release. However, for a slightly larger value of \(c_{\text{nsr}} = 1.020 \, \mu\text{M}\), larger \(N\) decreases nonspark-mediated release (\(J_{\text{rel}}^{\text{NS}}\)) while promoting robust sparks and increasing spark-mediated release \(J_{\text{rel}}^{\text{S}}\). However, if the total release flux (\(J_{\text{rel}}^{\text{T}}\)) is proportional to \(N\) (as opposed to a constant), larger \(N\) results in higher release flux regardless of \(c_{\text{nsr}}\) because of high release flux rate (see APPENDIX E).

Finally, Fig. 10 shows the steady-state spark Score for “clamped” \(c_{\text{myo}}\) and \(c_{\text{nsr}}\) and illustrates the interplay of bulk concentrations and Ca\(^{2+}\) sparks. For a given value of \(c_{\text{myo}}\), the Score is a bell-shaped function of \(c_{\text{nsr}}\), that is, there is a specific range of SR Ca\(^{2+}\) load that supports robust sparks. As observed in prior work (21), the range for robust sparks decreases as \(N\) is increased (Fig. 10, B and C). Most importantly, the solid black lines indicate the steady-state (unclamped) network SR [Ca\(^{2+}\)] (\(c_{\text{nsr}}\)) as a function of \(c_{\text{myo}}\) (cf. Fig. 4B). When \(c_{\text{myo}}\) is sufficiently elevated that further increase leads to decreased \(c_{\text{nsr}}\), the SR Ca\(^{2+}\) load equilibrates to a value that maximizes the Score, that is, the steady-state \(c_{\text{nsr}}\) decreases (with increasing \(c_{\text{myo}}\)) just enough to maintain robust sparks. This intriguing and potentially significant result is also observed when the total release flux \(J_{\text{rel}}^{\text{T}}\) is proportional to \(N\) (not shown).

DISCUSSION

Summary of main findings. In this article, we present a novel local/global whole cell model of Ca\(^{2+}\) homeostasis based on a Langevin description of stochastic Ca\(^{2+}\) release that includes both spark-mediated and nonspark-mediated release dynamics. The Fokker-Planck equation associated with the Langevin formulation of stochastic Ca\(^{2+}\) release is coupled to balance equations for the bulk myoplasmic and network SR [Ca\(^{2+}\)]. With the use of this approximate representation of the collective dynamics of a large number of identical CaRUs, this whole cell modeling approach avoids Monte Carlo simulation of a large population of CaRUs and facilitates our study of Ca\(^{2+}\) homeostasis in permeabilized ventricular myocytes.

In permeabilized myocytes, the interplay between bulk myoplasmic [Ca\(^{2+}\)] (\(c_{\text{myo}}\)) and network SR [Ca\(^{2+}\)] (\(c_{\text{nsr}}\)) on SR Ca\(^{2+}\) release is complex, in spite of the fact that myoplasmic
[Ca$^{2+}$] is under experimental control (i.e., c$_{\text{myo}}$ is not a dynamic variable but a model parameter). Elevated c$_{\text{myo}}$ promotes Ca$^{2+}$ uptake into the network SR via the SERCA pump, and this may elevate c$_{\text{nSR}}$. On the other hand, high c$_{\text{myo}}$ and high c$_{\text{nSR}}$ both promote increased SR Ca$^{2+}$ release and depletion of SR Ca$^{2+}$.

We use the Langevin and Fokker-Planck local/global whole cell model of a permeabilized ventricular myocyte to characterize the depletion of network SR [Ca$^{2+}$] (c$_{\text{nSR}}$) that occurs via both spark-mediated release and nonspark-mediated release, as well as dependency of SR Ca$^{2+}$ load on myoplasmic [Ca$^{2+}$] (c$_{\text{myo}}$). In agreement with recent experimental work (3), we find that spark-mediated release increases exponentially as c$_{\text{myo}}$ increases, while nonspark-mediated release increases linearly (Fig. 7).

The interplay among c$_{\text{myo}}$, c$_{\text{nSR}}$, and spark- and nonspark-mediated release in the local/global whole cell model generates several phenomena of Ca$^{2+}$ homeostasis in permeabilized cells that are worth highlighting. For example, the model predicts the presence of two distinct stable steady states that lead to the same SR Ca$^{2+}$ load, one with low myoplasmic [Ca$^{2+}$] and predominantly nonspark-mediated SR Ca$^{2+}$ release and another with high myoplasmic [Ca$^{2+}$] and release that is primarily spark mediated (Fig. 5). Significantly, in our permeabilized ventricular myocyte model, for any clamped myoplasmic [Ca$^{2+}$] (c$_{\text{myo}}$) that is large enough to trigger spark-mediated release, the resulting spontaneous stochastic Ca$^{2+}$ release tends to decrease the network SR Ca$^{2+}$ load just enough to maintain robust Ca$^{2+}$ sparks (Fig. 10). To our knowledge this potentially significant characteristic of Ca$^{2+}$ homeostasis in permeabilized cells has not previously been identified.

Physiological significance. Significant effort in recent years has been devoted to understanding the mechanisms influencing RyR regulation and SR Ca$^{2+}$ release. Abnormal regulation of RyRs can lead to aberrant SR Ca$^{2+}$ release that directly contributes to excitation-contraction coupling dysfunction (13, 14). Previous studies have shown RyR-mediated Ca$^{2+}$ release was enhanced in myocytes from failing rabbit hearts (40), which increases the likelihood of Ca$^{2+}$-dependent arrhythmias (13). Recent experiments suggested that hidden RyR release contributes to the total release flux and influences Ca$^{2+}$ homeostasis (3, 4, 40). In this article, we are particularly inter-
ested in how myoplasmic [Ca\(^{2+}\)] (c\(_{\text{myo}}\)) influences SR Ca\(^{2+}\) release via regulation of stochastic Ca\(^{2+}\) release mediated by CaRUs composed of clusters of RyRs. Our model shows that RyRs may produce both visible (spark-mediated) and invisible (nonspark-mediated) stochastic Ca\(^{2+}\) release. High c\(_{\text{myo}}\) increases both spark- and nonspark-mediated release by increasing the open probability of Ca\(^{2+}\)-activated RyRs. However, c\(_{\text{myo}}\) affects these pathways in two distinct and characteristic ways. Nonspark-mediated Ca\(^{2+}\) release increases linearly as a function of c\(_{\text{myo}}\), while spark-mediated release increases exponentially with c\(_{\text{myo}}\).

We investigated how the number of RyRs in each individual CaRU influences network SR Ca\(^{2+}\) depletion and stochastic Ca\(^{2+}\) release. When \(v_{\text{rel}}^T\) is fixed (single channel conductance inversely proportional to \(N\)), we found that a larger number of RyRs per CaRU results in a steeper release flux (primarily spark-mediated release) as a function of network SR [Ca\(^{2+}\)], when the SR is replete. However, when network SR [Ca\(^{2+}\)] is depleted, and the release flux is primarily nonspark mediated, increasing the number of RyRs per CaRU decreases the total release flux, due to reduced triggering of Ca\(^{2+}\) sparks (Figs. 8 and 9). When \(v_{\text{rel}}^T\) is proportional to \(N\) (fixed single channel conductance), SR Ca\(^{2+}\) decreases with increasing \(N\), due to higher release rates (not shown).

Because recent studies have shown that the number of RyRs per CaRU is variable (1), we note that the local/global whole cell model presented here can be modified to account for CaRUs of different size by simultaneously solving multiple Fokker-Planck equations, each with a different value for \(N\). Assuming \(M = \sum M_i\) CaRUs, with CaRUs of type \(i\) composed of \(N_i\) RyRs, the population densities \(\rho_i\) solve

\[
\frac{\partial \rho_i}{\partial t} = - \frac{\partial}{\partial f}[\alpha_i \rho_i] + \frac{1}{2} \frac{\partial^2}{\partial f^2} \gamma_i \rho_i,
\]

where \(\alpha_i = v_i^+ - v_i^-\), \(\gamma_i = (v_i^+ + v_i^-)N_i\), \(v_i^+ = k^+ (c_i_{\text{ds}}) \delta(1 - f)\) and \(v_i^- = k^- f\). The stochastic Ca\(^{2+}\) release flux (Eq. 27) becomes

\[
J_{\text{nsr}}^T(t) = \frac{1}{M} \sum M_i \int \nabla_{\text{nsr}}(c_{\text{nsr}} - c_{\text{jnsr}}) \rho_i(f, t) \, df
\]

or

\[
J_{\text{nsr}}(t) = c_{\text{nsr}} - \frac{1}{M} \sum M_i \int \nabla_{\text{jnsr}} \rho_i(f, t) \, df
\]

where \(\int \rho \, df = 1\) and thus \(M^{-1} \sum_i \int_i \rho \, df = 1\). In these equations, \(c_{\text{nsr}}(f)\) and \(c_{\text{jnsr}}(f)\) are given by indexed versions of Eqs. 32 and 33 where \(v_{\text{rel}}^T = v_{\text{rel}}^0 N_i f\) and \(v_{\text{rel}}^0\) is analogous to the RyR unitary conductance. Writing \(v_{\text{myo}}^i\) and \(v_{\text{nsr}}^i\) as the domain time constants for a representative of the \(i\)th class of CaRU, \(v_{\text{myo}}^i\) and \(v_{\text{nsr}}^i\) are given by Eqs. 34–37 upon replacement of \(f\) for \(\bar{f}\). The Fokker-Planck equations are coupled, because \(\alpha_i\) is a function of \(c_{\text{nsr}}\) through \(c_{\text{dsr}}\) and \(c_{\text{nsr}}/\partial t\) depends on the \(\rho_i\) through \(v_{\text{rel}}^T\) (Eq. 32).

Comparison to other whole cell models. A number of mathematical and computational whole cell models have been developed to understand Ca\(^{2+}\) homeostasis and the cardiac Ca\(^{2+}\) cycle. For example, computational models of excitation-contraction coupling in ventricular myocytes have been developed in which SR Ca\(^{2+}\) release depends directly on the average myoplasmic [Ca\(^{2+}\)] (25, 34). These “common pool” models (33) exhibit all-or-none triggered SR Ca\(^{2+}\) release, contrary to experiments showing that release is smoothly graded with changes in Ca\(^{2+}\) influx (5, 36). This discrepancy is a consequence of the “local control” mechanism of CICR. In ventricular myocytes, the cellular SR Ca\(^{2+}\) release flux is not a function of the spatially averaged intracellular [Ca\(^{2+}\)] but instead depends on thousands of different local Ca\(^{2+}\) concentrations fluctuating in response to stochastic openings and closings of RyRs located on the SR membrane. The picture is further complicated by dynamic changes in localized SR [Ca\(^{2+}\)] that are also spatially heterogeneous and thought to influence the gating of RyRs (31).

To overcome this problem, stochastic models that account for the heterogeneous dyadic subspace and junctional SR [Ca\(^{2+}\)] have been developed (19, 22, 39). Similar to the Langevin model that is the focus of this article, these local control models include a large number of CaRUs. In such models, RyR stochastic gating is typically described by a discrete-state Markov chain. This approach has recently been used to examine issues such as allostery coupling between RyRs (39) and refractoriness of Ca\(^{2+}\) release after termination (28).

While Markov chain and Langevin models of CaRUs may lead to similar results (Fig. 1), the state space for Markov chain simulations is proportional to the number of CaRU states, a quantity that is exponential in the number of distinct RyR states. To see this, consider a CaRU composed \(N\) identical K-state channels (and thus \(K^N\) states). It is well-known that the number of distinguishable CaRU states is given by \((N + K - 1)!/N!(K - 1)! = [(N + K - 1)...(N + 1)!]/(K - 1)\), a quantity that includes a term proportional to \(N^K - 1\) (the numerator has \(K - 1\) terms) and is thus exponential in \(K\). On the other hand, the run time for Langevin simulations is independent of the number of RyRs (\(N\) is a model parameter that scales the channel noise) and proportional to the number of RyR states \(K\) (the required number of SDEs). Similarly, the run time of the Langevin local/global model does not scale with \(N\), and the model may be extended to include RyRs with more than two states (see below). Because the Langevin version of the local/global model that has been our focus involves only a single SDE (two-state RyR model), the probability density function for CaRU state is univariate. For this reason, the Fokker-Planck local/global whole cell model is extremely computationally efficient. Because a K-state RyR model leads to a Fokker-Planck equation with \(K - 1\) independent variables (conservation of probability), the Langevin version of the local/global model is likely to be more straightforward than the Fokker-Planck version when \(K \geq 3\) (see Eq. 41 below).

It is instructive to compare the local/global model presented here with our prior work. In Hartman et al. (22), we presented a similar minimal model of a permeabilized myocyte, in which bulk myoplasmic and network SR Ca\(^{2+}\) levels were coupled to a Markov chain CaRU model with Ca\(^{2+}\)-activated RyRs per release site. The master equation in this case was a linear system of \(N + 1\) ODEs. The Langevin and Fokker-Planck local/global models presented here are also distinct from prior work of Williams et al. (37, 38). In these studies, Ca\(^{2+}\) release dynamics were described by a set of coupled multivariate probability density functions (advection-reaction equations) for the dyadic subspace and junctional SR [Ca\(^{2+}\)], \(c_{\text{dsr}}\) and \(c_{\text{jnsr}}\), conditioned on CaRU state. This population density method and the associated moment-based reductions (38) are limited
by a state-space explosion that is exponential in \(K \), while the computational efficiency of the Langevin local/global model is linear in \(K \).

Limitations and extensions of the model. In the Langevin model, we assume that the number of channels in each CaRUs is large enough that the fraction of RyRs in different states can be treated as a continuous variable. When the number of RyRs per CaRU is small, the error associated with the Langevin approximation to the Markov chain CaRU model may not be acceptable (15). In the local/global whole cell model presented here, the Langevin formulation was validated using a physiologically realistic numbers of RyRs per CaRU (see Figs. B1 and B2). The number of RyRs per CaRU required for the Langevin formulation to be highly accurate likely depends on the details of the RyR model used but is easily determined in any specific case.

In the derivation of the reduced local/global model, we assume that the dynamics of dyadic subspace \([Ca^{2+}] \) and junction SR \([Ca^{2+}] \) are fast compared with the gating of RyRs. However, slow translocation of junctional SR \([Ca^{2+}] \) can be incorporated into the Langevin local/global whole cell model through the addition of an additional SDE (24). This extension might be important if the chosen RyR model includes luminal regulation, that is, transitions whose rate is a function of \(\gamma \). Figure B1 shows that the score and <eq> O </eq> for \(\gamma \) is thus

\[
\frac{1}{\Delta t} \sum_{t=0}^{N-1} \frac{\Delta t}{\Delta N_0} \left(\frac{1}{O(\gamma)} \right) \]

The function \(\gamma(\gamma_0) \) that occurs in Eq. 8 is derived from this quantity using \(E[\Delta t]/\gamma(\gamma_0) = E[\Delta N_0/\gamma(\gamma_0)]/N^2 \).

APPENDIX B: COMPARISON OF MARKOV CHAIN AND LANGEVIN CARU MODELS

Figure B1A compares the spark Score calculated via the Langevin (+ symbols) and the Markov chain (lines) description of a CaRU composed of two-state channels. The Score is a biphasic function of the coupling strength \(c \) (Eq. 38), with robust sparks occurring over a wider range of coupling strength when \(N = 20 \) vs. 60 (dashed and solid lines, respectively). The Langevin method agrees with the Markov chain result, but overestimates the Score slightly for \(N = 20 \) and small \(c \) (parameter regimes with few channel openings). Figure B1B shows that the Score calculated via the stationary distribution of the Markov chain and the Fokker-Planck equation are in agreement.

The Langevin method is also applicable to more complex single channel models. For example, consider a three-state RyR that is activated as well as inactivated by \(Ca^{2+} \),

\[
\begin{align*}
C(\text{closed}) & \xrightarrow{k_{-1}c} O(\text{open}) \xrightarrow{k_{+}c} R(\text{refractory}) \quad (42)
\end{align*}
\]

where \(c \) is the local \([Ca^{2+}] \), \(k_{-1} \), \(c \), \(k_{+} \), and \(c \) are transition rates with units of \(\text{time}^{-1} \), \(k_{-1} \), and \(k_{+} \) are association rate constants with units of \(\text{conc}^{-n} \text{time}^{-1} \), and the cooperativity of \(Ca^{2+} \) binding \(n \) is the same for activation and inactivation. The Langevin description of a CaRU composited of \(N \) three-state channels (Eq. 42) is given by Eq. 39, where the fraction of channels in each state, \(f = (f_r, f_o, f_k) \), is a row vector, \(Q \) is the transition rate matrix,

\[
\begin{align*}
\frac{df}{dt} = fQ + \xi(t)
\end{align*}
\]

where \(f = (f_1, f_2, \ldots, f_K) \) and \(\xi = (\xi_1, \xi_2, \ldots, \xi_K) \) are row vectors, \(Q = (q_{ij}) \) is the RyR model’s transition matrix (the Markov chain’s infinitesimal generator), the random term is mean zero \((\mathbb{E} \xi(t) = 0) \) with two-time covariance matrix,

\[
\mathbb{E} \xi(t) \xi(t') = \Gamma(f) \delta(t - t'),
\]

where \(\Gamma = (\gamma_{ij}), \gamma_{ij} = -q_{ij} f_i + q_{ji} f_j / N \) for \(i \neq j \) and \(\gamma_{ii} = -\sum_{j \neq i} \gamma_{ij} \) (the \(\gamma \) are positive) (26). The corresponding Fokker-Planck equation for the \(K \)-state system

\[
\frac{df}{dt} = \nabla \mathcal{L} f(\mathcal{Q}) + \xi(t)
\]

where \(\mathcal{L} \) is the infinitesimal generator of the Markov process and \(\xi(t) \) is the random term.

The Langevin method is also applicable to more complex single channel models. For example, consider a three-state RyR that is activated as well as inactivated by \(Ca^{2+} \),

\[
\begin{align*}
C(\text{closed}) & \xrightarrow{k_{-1}c} O(\text{open}) \xrightarrow{k_{+}c} R(\text{refractory}) \quad (42)
\end{align*}
\]

where \(c \) is the local \([Ca^{2+}] \), \(k_{-1} \), \(c \), \(k_{+} \), and \(c \) are transition rates with units of \(\text{time}^{-1} \), \(k_{-1} \), and \(k_{+} \) are association rate constants with units of \(\text{conc}^{-n} \text{time}^{-1} \), and the cooperativity of \(Ca^{2+} \) binding \(n \) is the same for activation and inactivation. The Langevin description of a CaRU composed of \(N \) three-state channels (Eq. 42) is given by Eq. 39, where the fraction of channels in each state, \(f = (f_r, f_o, f_k) \), is a row vector, \(Q \) is the transition rate matrix,
As equilibrium noise approximations (18) and reflected stochastic and projection methods as well as more sophisticated approaches such as the fraction of channels in state t transitions agree.

Eqs. 5 and 39), $\xi(t) = [\xi_C(t), \xi_o(t), \xi_R(t)]$ is mean zero ($\langle \xi(t) \rangle = 0$) with two-time covariance $\langle \xi(t) \xi(t') \rangle = \Gamma(0,0)\delta(t-t')$ (Eq. 40). Here $\Gamma = (\gamma)$ is given by $\gamma_{OC} = \gamma_{CO} = [k_{+C}^c v_c + k_{-C} f_0]/N$, $\gamma_{OR} = \gamma_{RO} = [k_{+C}^c v_c + k_{-C} f_0]/N$, $\gamma_{CR} = \gamma_{RC}$ and the diagonal entries are such that each row sums to zero.

Figure B2 plots Score vs. coupling strength (c_o) for this Langevin model of a CaRU composed of N three-state channels with Ca^{2+} inactivation. This may be compared with the result for a CaRU composed of N two-state channels with no inactivation (Fig. B1). Consistent with a previous computational study (21), Fig. B2 shows that Ca^{2+}-dependent inactivation facilitates spark termination (i.e., CaRUs spark for a wider range of coupling strengths). Most importantly, the Langevin (+ symbols) and Markov chain (lines) simulations agree.

APPENDIX C: LANGEVIN EQUATION BOUNDARY CONDITIONS

Because solutions of the Langevin CaRU model (f_i) represent the fraction of channels in state i, physical values are in the range $0 \leq f_i \leq 1$ and, formally, the stochastic processes that solve the Langevin CaRU models (Eqs. 5 and 39) have this property. However, numerical integration via the Euler-Maruyama method (16) involves a finite time step; consequently, there is a small probability of crossing $f_i = 0$ or 1, thereby exiting the physical range.

In the context of stochastic ODE modeling of ion channel dynamics, several modifications of the Euler-Maruyama scheme are commonly used to address this numerical issue. These include rejection and projection methods as well as more sophisticated approaches such as equilibrium noise approximations (18) and reflected stochastic differential equations (reviewed in Ref. 7). Unfortunately, these methods yield solutions that may disagree with the corresponding Markov chains when $N = 20–200$ (11). In the context of Langevin CaRU models, a superior approach is to define auxiliary variables (observables) restricted to the physical range, i.e., $f^*_i = \max(0, \min(1, f_i))$, for evaluation of state-dependent rates, without projecting the stochastic trajectory f_i to the boundary. For example, the Euler-Maruyama scheme to integrate $\xi(t)$ is

$$f^{n+1} = f^n + \Delta t \left[\alpha(f^n) + \sqrt{\gamma(f^n)} dB^n \right]$$

where the ΔB^n are i.i.d. normal random variables with mean zero and variance $1/\Delta t$, $\alpha(f) = k^+_C c^n (1 - f) - k^-_C f$, and $\gamma(f) = [k^+_C c^n (1 - f) + k^-_C f]/N$ and $\tilde{c} = c_o + \tilde{c}$. Because the deterministic flux is positive ($\alpha > 0$) when $f < 0$ and negative ($\alpha < 0$) when $f > 1$, no restriction is necessary for the factors $1 - f$ and f in α; in fact, we found that not doing so yields better agreement with the corresponding Markov chain simulations. Conversely, \tilde{f} is used in the evaluation of the diffusive term to ensure $\tilde{\gamma}$. This method has similarities to the reflected stochastic differential equation technique discussed in Dangendorf et al. (2012).

APPENDIX D: SPARK STATISTICS ANALYSIS VIA THE LANGEVIN DESCRIPTION OF THE LOCAL/GLOBAL WHOLE CELL MODEL

Figure D1 shows the mean steady-state spark amplitude (A), spark duration (B), and interevent intervals (C) as a function of c_{myo} calculated via the Langevin version of the local/global whole cell model. The duration of the ith Ca^{2+} release event is the time elapsed between the first channel opening and last channel closing of each simulated spark, here defined as f_0 crossing the threshold.
The amplitude of the \(i\)th \(\text{Ca}^{2+}\) release event is the integrated area under \(f(t)\) during the event. The \(i\)th interevent interval is the length of time between the \((i-1)\)th and \(i\)th \(\text{Ca}^{2+}\) release events. Note that spark amplitude and spark duration are biphasic functions of \(c_{\text{myo}}\), peaking at \(c_{\text{myo}} \approx 0.25\) μM, similar to the steady-state \(c_{\text{nsr}}\) and spark \textit{Score} (Fig. 4, B and C).

APPENDIX E: \(\text{Ca}^{2+}\) RELEASE FLUX AND \(\text{CaRU}\) SIZE

Most of the parameter studies presented above assume that the total number of RyRs per cell is fixed. When the number of channels per \(\text{CaRU}\) \((N)\) is varied, the number of \(\text{CaRUs}\) per cell \((M)\) is changed so that \(MN\) is a constant (i.e., the total release flux rate \(v_{\text{rel}}\) is fixed). Alternatively, \(M\) may be fixed; in this case, \(v_{\text{rel}}^T\) is proportional to \(\text{CaRU}\) size \((N)\). Figure E1 shows the total release flux \((J_{\text{rel}}^T)\), spark-mediated release \((J_{\text{rel}}^S)\), and nonspark-mediated release \((J_{\text{rel}}^{NS})\) when the number of channels per \(\text{CaRU}\) \((N)\) are varied under this assumption (fixed single channel conductance). In this case, regardless of \(c_{\text{nsr}}\), the total release flux and spark-mediated release are higher for larger \(N\). Conversely, when \(v_{\text{rel}}^T\) is fixed (Fig. 8), the clamped network SR \([\text{Ca}^{2+}]\) determines whether \(\text{CaRU}\) size \(N\) increases or decreases the total release flux \(J_{\text{rel}}^T\). Figure E2 shows release flux density increases with \(\text{CaRU}\) size when \(v_{\text{rel}}^T\) is proportional to \(N\) (cf. Fig. 9).

GRANTS

The work was supported in part by National Science Foundation Grant DMS 1121606 (to G. D. Smith) and the Biomathematics Initiative at The College of William & Mary.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

1. Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C. Optical single-channel resolution imaging of the ryanodine...

