Dehydroepiandrosterone Restores Right Ventricular Structure and Function in Rats with Severe Pulmonary Arterial Hypertension

Abdallah Alzoubi¹,₄, Michie Toba¹,₄, Kohtaro Abe¹,₂,₄, Kealan D. O'Neill⁴, Petra Rocic³, Karen A. Fagan¹,₂,₄, Ivan F. McMurtry¹,₂,₄, and Masahiko Oka¹,₂,₄

Departments of ¹Pharmacology, ²Medicine, and ³Biochemistry and Molecular Biology, and ⁴Center for Lung Biology, University of South Alabama, Mobile, AL 36688

Corresponding Author:
Masahiko Oka, MD, PhD
Email: moka@usouthal.edu

Running Title: DHEA protects the right ventricle in PAH rats.

Author’s Contributions: Abdallah Alzoubi participated in the design of the study and the data interpretation, performed the experiments and the statistical analyses, and wrote the manuscript. Michie Toba and Kohtaro Abe carried out the in vivo hemodynamic experiments and participated in data interpretation. Kealan D. O’Neill, Petra Rocic, and Karen A. Fagan participated in data interpretation. Ivan F. McMurtry participated in the overall design of the study and data interpretation and helped to draft the manuscript. Masahiko Oka supervised the overall study design and coordination.

Copyright © 2013 by the American Physiological Society.
and helped to draft the manuscript. All authors read and approved the final manuscript.
ABSTRACT

Current therapy of pulmonary arterial hypertension (PAH) is inadequate. Dehydroepiandrosterone (DHEA) effectively treats experimental pulmonary hypertension in chronically hypoxic and monocrotaline-injected rats. Contrary to these animal models, SU5416/hypoxia/normoxia-exposed rats develop a more severe form of occlusive pulmonary arteriopathy and right ventricular (RV) dysfunction that are indistinguishable from the human disorder. Thus, we tested the effects of DHEA treatment on PAH and RV structure and function in this model. Chronic (5 weeks) DHEA treatment significantly, but moderately, reduced the severely elevated RV systolic pressure. In contrast, it restored the impaired cardiac index to normal levels, resulting in an improved cardiac function as assessed by echocardiography. Moreover, DHEA treatment inhibited RV capillary rarefaction, apoptosis, fibrosis, and oxidative stress. The steroid decreased NADPH levels in the RV. As a result, the reduced reactive oxygen species production in the RV of these rats was reversed by NADPH supplementation. Mechanistically, DHEA reduced the expression and activity of Rho kinases in the RV, which was associated with the inhibition of cardiac remodeling-related transcription factors STAT3 and NFATc3. These results show that DHEA treatment slowed the progression of severe PAH in SU5416/hypoxia/normoxia-exposed rats, and protected the RV against apoptosis and fibrosis, thus preserving its contractile function. The anti-oxidant activity of DHEA, by depleting NADPH, plays a central role in these cardio-protective effects.

WORD COUNT = 204

Key Words: Dehydroepiandrosterone, oxidative stress, pulmonary arterial
hypertension, right ventricle, SU5416, Rho kinase.
INTRODUCTION

Pulmonary arterial hypertension (PAH) refers to a group of diseases with severe pulmonary hypertension and concentric laminar and plexiform occlusive lesions of the small pulmonary arteries and arterioles, i.e., plexogenic arteriopathy (45). If left untreated, PAH follows a progressive, refractory, and fatal course, due to the development of right ventricular (RV) failure (34). The persistently high mortality rates in treated patients highlight the inadequacy of the current treatments of PAH (32). There is now a general agreement that the complex pathology of PAH reflects its multifactorial nature, which means several signaling pathways are aberrant in the process (9). This accounts for the recent propensity towards using combination therapies for PAH (33). In addition, a recent report suggests that RV dysfunction in PAH might not be solely attributable to the pressure overload caused by increased pulmonary vascular resistance (6). Therefore, an ideal therapeutic strategy for PAH should be directed simultaneously against the multiple dysregulated signaling pathways in both pulmonary hypertension and RV dysfunction.

Dehydroepiandrosterone (DHEA) is a naturally occurring, cholesterol-derived steroid hormone, secreted mainly from the adrenal cortex, and serves in humans as a precursor for both estrogens and androgens (27). DHEA has been solidly linked to a wide variety of beneficial biological and physiological actions (53). Recent reports have shown that chronic DHEA treatment ameliorates experimental pulmonary hypertension in rats and mice via multiple mechanisms, including vasodilatation (30) and anti-proliferative effects (31). However, the animal models utilized in these studies [chronically hypoxic (7, 21, 38) and monocrotaline-injected rats (23, 40)] do not show
the full spectrum of hemodynamic and histopathologic features of human PAH, including RV failure (18). In contrast, rats injected with the vascular endothelial growth factor-receptor blocker, Sugen(SU)5416, and then exposed to hypoxia and normoxia, develop severe PAH that recapitulates the major characteristics of the human disease, i.e., plexogenic arteriopathy, chronic deterioration, RV dysfunction, and unresponsiveness to treatments (1, 47, 48). Additionally, direct beneficial effects of DHEA on dysfunctional RV in the context of severe PAH have not been previously evaluated.

It has been reported that several RV-damaging factors act in concert to cause RV decompensation and maladaptive remodeling in PAH patients. These include hemodynamic overload, neurohormonal activation, and RV inflammation and oxidative stress (5). Given the well-documented anti-oxidant effects of DHEA (24), we hypothesized that DHEA would restore RV structure and function in SU/Hx/Nx rats with established severe PAH, through the combined effects of a reduction in pressure overload and direct inhibition of RV oxidative stress.
METHODS

Animals

All experimental procedures were conducted in accordance with the Animal Welfare Act, and approved by the Institutional Animal Care and Use Committee of the University of South Alabama.

Adult male Sprague-Dawley rats (weighing 150-200 g) were assigned to three groups as follows (Figure 1): [A] normal controls, [B] rats receiving a single subcutaneous injection (20 mg/kg) of SU5416 (Cayman Chemical Company) on day one and then exposed to 3 weeks of normobaric hypoxia (10% O₂) followed by re-exposure to normoxia (21% O₂) for 5 additional weeks (SU/Hx/Nx), and [C] same as group B, except for receiving 1% DHEA-containing food (Teklad Custom Research Diet) from week 3 to week 8, for a total of 5 weeks (+ DHEA). The dose of DHEA was based on previous studies (23).

Echocardiography

Echocardiography was performed using the Vevo770 imaging system (VisualSonics, Toronto, Canada) at baseline and at the end of week 7, to evaluate the progression of RV function in all groups. Rats were anesthetized but kept spontaneously breathing using an isoflurane 2.0% in 1:1 O₂/air mixture. Temperature, and heart and respiratory rates were continuously monitored. Two-dimensional, M-mode and Doppler flow imaging were obtained with a 30-MHz probe. Measurements of the RV inner diameter in diastole (RVID-Dia), tricuspid annular plane systolic excursion (TAPSE), and pulmonary artery acceleration time (PA-AT) were acquired as previously reported (43).

Hemodynamic measurements in catheterized rats
All rats were catheterized at the end of the eighth week for hemodynamic measurements, as described previously (39). Rats were anesthetized with pentobarbital sodium (30 mg/kg, IP). Polyvinyl catheter (PV-1, internal diameter: 0.28 mm) was inserted into the right ventricle via the right jugular vein for measurement of RV systolic pressure (RVSP). Because of the severe RV hypertrophy and apparent change in the shape of the RV chamber in SU/Hx/Nx rats, we could not routinely catheterize the pulmonary artery and therefore measured RVSP as a surrogate. In some cases when the artery was catheterized, systolic pulmonary arterial pressure and RVSP were equal. A micro-tip P-V catheter (SPR-838, Millar Instruments) was inserted into the right carotid artery and advanced into the left ventricle. Heart rate, systolic arterial pressure, and cardiac output were measured. Cardiac index (CI) was calculated by dividing cardiac output by body weight (1). Total pulmonary resistance index (TPRI) was estimated by dividing RVSP by CI (38). Left ventricular end-diastolic pressure was not elevated across the 3 groups (2-5 mmHg).

Dihydroethidium staining

A qualitative evaluation of the in-vivo superoxide (O$_2^-$) production in the RV was done by dihydroethidium (DHE) staining, as previously described (42). Rats were intravenously injected with DHE (60 μg/kg) at the end of the catheterization procedure, 5 minutes prior to sacrifice. Hearts were then removed, dissected, weighted, frozen in optimal cutting temperature formulation (OCT, Electron Microscopy Sciences) on dry ice, and stored at -70°C until sectioning. 5-μm sections were made in a cryo-microtome and mounted on glass slides. DHE fluorescence was detected with excitation/emission
at 518/605 nm, using a Nikon Eclipse TE2000-U microscope. Data were analyzed using Metamorph 7.1.2.0 software (Molecular Devices, Inc.).

Lucigenin chemiluminescence assay

Whole RV homogenates (20 μL) were added to microplate wells containing 5-μM lucigenin for the detection of superoxide, as previously reported (51). Lucigenin chemiluminescence was measured in a liquid scintillation counter (Beckman Instruments) at 37°C. The measurements were repeated in the presence of NADPH (50 μmol/L). Data are presented as counts per milligram of protein after background subtraction.

Measurement of RV NADPH levels

NADP+/NADPH quantification kit (BioVision Inc.) was used for the measurement of tissue NADPH levels according to manufacturer’s recommendations. Briefly, RV tissue homogenates were heated to 60°C for 30 minutes to decompose NADP content while keeping NADPH intact. Samples and NADPH standards (50 μl each, in duplicates) were incubated with 100 μl of NADP cycling mix to convert NADP to NADPH. Calorimetric reactions were started by adding 10 μl of NADPH developer, and absorbance was then measured at OD450nm at 0, 15, 30, 45, and 60 minutes, and reactions were subsequently stopped by adding 10 μl Stop solution to each well. Data are presented as NADPH level (pMol) per mg protein.

Morphometric analysis of pulmonary vascular remodeling

Rat lungs from the three experimental groups were fixed for histology by tracheal instillation of a mixture of 1% formalin and 0.5% agarose under constant pressure (20 cmH₂O). The trachea was ligated after sustained inflation, and the lungs were excised
and immersed in 10% formalin for 48 hours. Formalin-fixed lung tissue was cut into 5 mm-thick sections, placed in 70% ethanol, and embedded in paraffin. Paraffin sections (5-μm thick) were then serially mounted onto Superfrost Plus slides (Fisher Scientific) and stained with Verhoeff-van Gieson (VVG) stain, or left unstained for immunohistochemistry. We assessed the vascular occlusion density by grading the small (< 50 μm) pulmonary arteries as described by Faul et al. (15) in VVG-stained sections: grade 0 (no occlusion), grade 1 (< 50% occlusion), and grade 2 (> 50% occlusion). Medial wall thickening of medium-sized (50 – 200 μm) pulmonary arteries was calculated in α-smooth muscle actin-stained slides (primary antibody: Abcam Inc.), as a percentage of the average thickness of the medial wall to the total outer diameter of the vessel in at least 50 random, but consecutive, vessels per slide.

Histological studies

Formalin-fixed and paraffin-embedded heart tissue was stained with Masson’s trichrome stain to assess the degree of fibrosis (collagen fibers stain blue) within the heart tissue, or left unstained for immunohistochemistry. Images were acquired using a Nikon E600 light microscope with digital interface and computer imaging software. Immunohistochemical staining of paraffin-embedded slides was performed using Vectastain Universal Quick Kit (Vector Laboratories), according to manufacturer’s recommendations. Briefly, slides were heated at 60°C, then sequentially washed in xylene and gradual dilutions of ethanol for de-paraffenization. Antigen retrieval was achieved by incubating the slides in heated (100°C) citrate buffer (1X, pH = 6, Dako). Endogenous peroxidase activity was then suppressed by 3% hydrogen peroxide treatment. Slides were incubated with a blocking buffer (1% universal horse serum) for
an hour at room temperature, and then with the primary antibody under-study overnight at 4°C. Incubations with a biotinylated universal secondary antibody (Dako) and then avidin-biotin complex (Dako), each for 30 minutes at room temperature, then followed. Detection of positive staining was done using 3,3'-Diaminobenzidine (DAB) substrate chromogen system (Dako), and tissues were then counter-stained with hematoxylin, and finally washed with xylene and ethanol. Primary antibodies used were against: nitrotyrosine (Millipore), cleaved caspase 3 (Cell Signaling), and CD31 (Abcam Inc.). Capillary density was expressed as CD31-positive spots per RV cross-sectional area. Cardiomyocyte cross-sectional area was measured in at least 200 transversally cut cardiomyocytes per each H&E-stained sample. TUNEL assay (ROCHE) was used to detect apoptosis in the heart tissue.

Western blotting

Snap-frozen whole RV tissue was homogenized, and protein concentration in the supernatant was determined using the BCA protein assay (Thermo Scientific), as previously described (49). Standard methods of Western blotting were used to evaluate the expression levels of collagen 1 (Santa Cruz), cleaved caspase 3 (Santa Cruz), Rho kinase I/β (BD Pharmingen), Rho kinase II/α (BD Pharmingen), MYPT-1 (Millipore), P-MYPT-1 (Millipore), P-STAT3 (Cell Signaling), NFATc3 (Santa Cruz), gp91phox (Santa Cruz), and β-actin (Santa Cruz).

Statistical analyses

Values shown are means ± SEM. Analysis of Variance (ANOVA) with Bonferroni post hoc test was used for comparisons among the experimental groups. For correlations,
Pearson calculations with two-tailed p value were first done and a linear regression analysis was then used to create a best-fit line. Differences were considered significant at $P<0.05$.
RESULTS

DHEA has more profound effects on cardiac output than on pulmonary arterial pressure

Consistent with previous studies (1), SU/Hx/Nx rats showed marked increases in RV systolic pressure (RVSP, Figure 2A), total pulmonary resistance index (TPRI, Figure 2C), and the RV hypertrophy index: RV/LV+S weight ratio (Figure 2D), and a significant attenuation of cardiac index (CI, Figure 2B). Chronic DHEA treatment restored the normal levels of CI, while only moderately reducing RVSP. The beneficial effects of DHEA on cardiac output were derived from an improving right, rather than left, ventricular function, as systolic systemic arterial pressure (Figure 2E) and heart rate (Figure 2F) were not significantly different among the three groups. Furthermore, DHEA treatment regressed pulmonary vascular remodeling, as it reduced both the medial wall thickening of medium-sized pulmonary arteries (Figure 2G), and, to an even greater extent, the luminal occlusion of small pulmonary arteries (Figure 2H).

DHEA reverses PAH-induced RV dysfunction

We utilized non-invasive echocardiography to more directly address the question of whether DHEA treatment improved RV function. DHEA significantly reduced RV internal diameter during diastole (Figures 3A and 3D) and restituted the normal position and orientation of the inter-ventricular septum, which had been otherwise flattened by the hypertrophied and/or dilated RV in the SU/Hx/Nx group. Further, DHEA restored the impaired tricuspid annular plane systolic excursion (TAPSE, Figures 3B and 3E). TAPSE is widely regarded as an excellent gauge of RV ejection fraction and systolic...
function (16), as evidenced by the significant correlation with CI (Figure 3F). The high pulmonary arterial pressure in the SU/Hx/Nx group was also reflected in a shorter pulmonary artery acceleration time (Figures 3C and 3G), with the appearance of systolic notching in the Doppler flow waves, compared to the normal-looking parabolic waves found in control animals. Such notching is understood to reflect systolic deceleration of flow across the pulmonary valve, indicating high pulmonary vascular resistance (50). Moreover, Arkles et al. (2) have reported that the shape and duration of RV outflow tract Doppler waves predict prognosis of PAH. Mid-systolic notching, as can be seen in the SU/Hx/Nx group, corresponds to a more severe RV dysfunction, contrary to the late-systolic notching found in the DHEA-treated rats.

DHEA protects the RV against structural maladaptive remodeling

To evaluate the effects of DHEA treatment on RV structure, we performed a morphometric analysis of RV fibrosis, cardiomyocyte cross-sectional area, and capillary density in the 3 groups of rats. The RV of SU/Hx/Nx rats developed a high degree of fibrosis, as indicated by the increased collagen-specific blue color in Masson’s trichrome-stained tissue (Figure 4A), and the increased collagen 1-A expression (Figure 4D). DHEA treatment markedly reduced the overall collagen content as well as collagen 1-A expression levels in the RV. Importantly, left ventricles from the three experimental groups had minimal fibrotic areas (data not shown), indicating that the left ventricle was spared from the pulmonary hypertensive effects of SU/Hx/Nx, at least at the 8-week time point. Moreover, the steroid treatment significantly reduced RV cardiomyocyte cross-sectional area that was otherwise enlarged in SU/Hx/Nx rats (Figures 4B and 4E). Additionally, and consistent with previous reports (6), chronic SU/Hx/Nx exposure
resulted in the loss (rarefaction) of RV capillaries (Figures 4C and 4F). In contrast, DHEA treatment recovered the normal density of RV capillaries. Because cardiac fibrosis is frequently coupled to cardiomyocyte death, we also examined the degree of RV apoptosis. RV from the SU/Hx/Nx group exhibited a significant increase in apoptosis rates, as evaluated by the TUNEL assay (Figures 5A and 5B), and active (cleaved) caspase 3 expression by immunohistochemistry (Figure 5C), and western blotting (Figure 5D). Interestingly, most apoptosis was observed in and around the coronary vessels, which might explain the observed capillary rarefaction in Figure 4. Chronic DHEA treatment prevented RV apoptosis. The anti-oxidant activity of DHEA plays a central role in its beneficial effects on RV structure and function. Since chronic pressure overload alone is not sufficient to induce RV fibrosis and apoptosis (6), it was important to explore other factors implicated in RV decompensation and maladaptive remodeling, such as RV oxidative stress. There was a substantial increase in DHE immunofluorescence in the RV of SU/Hx/Nx rats (Figure 6A), indicating a marked increase in superoxide levels, which was completely blocked by DHEA treatment. We also evaluated the formation of nitrotyrosine in the RV, as it has been shown to be detrimental to cardiac structure and function by decreasing the bioavailability of nitric oxide, which in turn results in coronary vasoconstriction (25). As can be seen in Figure 6B, nitrotyrosine signal intensity was increased in the RV of SU/Hx/Nx rats, most remarkably in the medial layer of coronary arteries. This was significantly attenuated by chronic DHEA treatment. To quantify these results, we used the lucigenin chemiluminescence assay (Figure 6C). Consistent with previous reports.
showing a basal level of reactive oxygen species (ROS) production in normal heart tissue (28), the RV of untreated rats exhibited a baseline level of superoxide generation. Chemiluminescence was significantly increased in the RV of SU/Hx/Nx rats. In contrast, superoxide production was markedly reduced in the RV of DHEA-treated rats, and even fell below baseline. Since NADPH oxidase is the main source of ROS in the heart (26), we repeated the measurements after adding NADPH, which is the preferred substrate for NADPH oxidase. While normal and SU/Hx/Nx RV tissues had no visible increases in ROS production in the presence of exogenous NADPH, the basal high levels of ROS were recovered in the DHEA-treated RV following the addition of NADPH. Despite the increased ROS in the SU/Hx/Nx RV, the expression level of the enzyme NADPH oxidase was not different among the 3 experimental groups, as indicated by western blotting of its integral subunit gp91phox (Figure 6D). Interestingly, the high RV-tissue levels of NADPH in SU/Hx/Nx rats were markedly reduced by DHEA treatment (Figure 6E).

The mechanism of cardioprotection by DHEA involves inhibition of Rho kinase and its downstream effectors

To further investigate the molecular mechanisms by which DHEA protects RV structure and function in the context of PAH, we studied its effects on the Rho kinase (ROCK) signaling pathway, because it is well-documented that ROCK is hyperactivated in various cardiovascular diseases (11), and is involved in cardiac maladaptive structural remodeling (29). As can be seen in Figure 7, DHEA treatment inhibited the expression levels and activity (phosphorylation of MYPT1) of ROCKI and ROCKII (Figures 7A-C), all of which were upregulated in the RV of SU/Hx/Nx rats. The inhibition of ROCK
activity was accompanied by reductions in the active dephosphorylated form of the nuclear factor of activated T-cells-cytoplasmic 3 (NFATc3, Figures 7D) and the active phosphorylated form of the signal transducer and activator of transcription 3 (STAT3, Figures 7E).
DISCUSSION

We showed here that during 8 weeks of SU5416/hypoxia/normoxia exposure, rats developed very severe occlusive pulmonary hypertension. A 5-week DHEA treatment (from week 3 to week 8 after SU5416 injection) significantly reduced RVSP as compared to the DHEA-untreated rats, although it was still much higher than that of normal rats. In contrast, DHEA restored cardiac index to normal levels, leading to a dramatic improvement of estimated total pulmonary resistance. The effect of DHEA on cardiac index is likely restoration rather than prevention/maintenance, because we have previously found that cardiac index in this model is already significantly impaired at the 2-week time point (37). Moreover, DHEA treatment reduced the frequency and severity of occlusive neointimal lesions in small pulmonary arteries. These results demonstrated that chronic DHEA treatment significantly slowed the progression of severe occlusive PAH in SU/Hx/Nx rats, and that, more impressively, it restored the impaired cardiac function to a near-normal level. Literature alludes to several mechanisms involved in such protective effects of DHEA on the hypertensive pulmonary circulation, including improvement of endothelial function, by upregulating endothelial nitric oxide synthase (30) and soluble guanylate cyclase (38), upregulation of potassium channel activity/expression (20), and inhibition of RhoA/Rho kinase (23) and Src/STAT3 (40) signaling pathways in pulmonary arteries.

Because the beneficial effect of DHEA on cardiac index was more profound than that on RVSP, and because a recent report suggests that certain factors other than pressure overload may be implicated in the progression into RV dysfunction in this rat model of PAH (6), we further examined cardiac function and structure. Functionally, DHEA
improved the main echocardiographic signs of progressive RV dysfunction. TAPSE was of particular importance, because recent studies have confirmed its excellent predictive value for RV ejection fraction and systolic function (16), which we validated through the significant correlation between TAPSE and cardiac index. DHEA recovered the control levels of TAPSE, indicating a preservation of the contractile functional capacity of RV, which in turn explains the regression of signs of RV dilatation and impending failure in these animals.

Structurally, DHEA prevented the terminal features of maladaptive RV remodeling, i.e., RV capillary rarefaction, apoptosis and fibrosis. It is hypothesized that in the early stages of PAH, the high pulmonary arterial pressure and pulmonary vascular resistance and stiffness are compensated by an adaptive “concentric” RV hypertrophy (22) to maintain normal levels of cardiac output. During the latter stages of the disease, however, the continued pressure overload, in concert with other RV-damaging factors, result in inhibition of angiogenesis and vascular cell apoptosis and rarefaction, which ultimately lead to reduction in number of cardiomyocytes (6). Given the low rates of cardiac cell regeneration (3), fibrosis is considered the main repair process in the heart. The resulting “eccentric” remodeling, where parts of the RV are dilated and others are hypertrophied, is a sign of impending RV failure. DHEA treatment recovered the normal density of coronary capillaries, and inhibited both RV apoptosis and fibrosis, but in contrast, it only moderately reduced the degree of RV hypertrophy. We, therefore, propose that DHEA shifts the RV from the stage of partially compensated eccentric remodeling seen in SU/Hx/Nx rats, into a fully compensated concentric RV hypertrophy phenotype.
Although the precise mechanisms of the progression into decompensated RV failure in PAH are not fully understood, there is convincing evidence that ROS play a key role in driving RV apoptosis and fibrosis (8). RV oxidative stress could potentially result from several factors in PAH, including sustained neurohumoral activation, inflammation, and chronic pressure overload. Redout et al. (41) and Bogaard et al. (6) have reported that anti-oxidant treatment protects monocrotaline-injected and SU/Hx/Nx-exposed rats, respectively, against RV fibrosis and failure. Our results show that DHEA treatment significantly inhibited the degree of RV oxidative stress, most notably in and around the coronary arteries, where most apoptosis and fibrosis can be seen. This finding corresponds to recent reports showing aberrant morphology, density, and structure of the RV microcirculation in SU/Hx/Nx rats with RV dysfunction (6).

Potential sources of ROS in the heart are NADPH oxidase, xanthine oxidase, and cytochrome P450 (17). The low constitutive activity of the non-phagocytic NADPH oxidase can be upregulated in response to several pathological stimuli, including cytokines, mechanical stress, and neurohormones (44). The resulting oxidative stress, in turn, drives cardiac hypertrophy, apoptosis, and fibrosis. In this context, Gupte et al. (19) have reported that glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH is the principal fuel for the production of superoxide by NADPH oxidase in the failing left heart. DHEA is documented to be a potent inhibitor of G6PD (20), and it thus regulates the redox state of the cell by reducing the availability of NADPH. Collectively, our current findings indicate that DHEA treatment suppressed NADPH production, and consequently inhibited oxidative stress, in the RV of PAH rats.
Mechanistically, we found that DHEA inhibited the expression and activity of ROCK in the RV. There is substantial evidence that the ROCK signaling pathway is activated in various cardiovascular diseases, among which are PAH (35) and heart failure (10). We have previously shown that DHEA treatment of left-pneumonectomy/monocrotaline-injected rats inhibited activation of lung RhoA/Rho kinase signaling, arrested progression of PAH, increased cardiac output, and strikingly increased survival of the rats (23). Moreover, Takeshima et al. (46) have recently reported a cardioprotective effect of ROCK inhibitors in rats with systemic hypertension and left ventricular failure. We propose that the anti-oxidant activity of DHEA on the RV is central to its inhibitory effect on ROCK signaling pathway, which in turn could mediate the suppression of several downstream effectors, including the cardiac remodeling-related transcription factors: STAT3 (36) and NFATc3 (52), in addition to the activity of the integral apoptosis regulator caspase 3 (54).

There are other possible mechanisms of direct beneficial effects of DHEA on cardiac function. For instance, recent reports point to a possible role for the DHEA-specific, G \textsubscript{i} protein-coupled, sigma 1 receptors in cardioprotection, through regulation of various cardiac ion channels (4). The definitive involvement of this axis in the protection against RV remodeling and dysfunction is, however, unclear. The likely peripheral conversion of DHEA into estrogens and androgens could also contribute to the observed cardioprotection in pulmonary hypertensive rats. However, the potential beneficial effects of sex hormones, particularly estrogen, on PAH are still controversial.

The dose of DHEA used in this study is very high. However, effective doses in humans might be much lower because of their very high basal DHEA levels compared to those
in rodents. DHEA has not been tested as a therapeutic option in human PAH, and optimal dosing is therefore not known. However, a recent preliminary report of an ongoing clinical trial in chronic obstructive lung disease-associated pulmonary hypertension patients revealed that chronic DHEA treatment (200 mg/day for 12 weeks) improved their exercise tolerance and hemodynamic parameters (12).

Although our results support the hypothesis that DHEA exerts a direct beneficial effect on RV structure and function, independent of the decrease in pressure overload, we will need to address this issue more definitively in our future work. For example, it may be helpful to use the exclusive RV pressure-overload animal model, i.e., the pulmonary artery-banding model, although this model provides variable results on RV dysfunction and its mechanisms, depending on the severity and duration of banding (13, 14).
CONCLUSION

The results of this project provide a foundation for an effective and safe oral therapeutic approach for severe PAH. Our findings suggest that DHEA has anti-pulmonary hypertensive, as well as, potent direct RV protective effects, both structurally and functionally. Besides being novel, these findings are highly significant, given the fact that RV failure is the main cause of morbidity and mortality in PAH patients, and that current treatments are expensive and minimally effective.

Sources of support: This work was supported by a grant from the American Heart Association (0765477Z) and by funds from the Department of Pharmacology and Center for Lung Biology, University of South Alabama.
REFERENCES

7. Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, Dos Santos P, Savineau JP, and Baulieu EE. Dehydroepiandrosterone (DHEA) prevents...
and reverses chronic hypoxic pulmonary hypertension. *Proc Natl Acad Sci U S A* 100:

14. **Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, Duncker DJ, Lamers JM, and Helbing WA.** Right and left ventricular function

46. Takeshima H, Kobayashi N, Koguchi W, Ishikawa M, Sugiyama F, and Ishimitsu T. Cardioprotective effect of a combination of Rho-kinase inhibitor and p38...

FIGURE LEGENDS

Figure 1: Experimental design: Adult male Sprague-Dawley rats (150-200 g) were assigned to 3 groups as follows: A) normal controls, B) rats receiving a single subcutaneous injection of SU5416 (20 mg/kg) on day one and then exposed to 3 weeks of normobaric hypoxia (10% O₂) followed by re-exposure to normoxia (21% O₂) for 5 additional weeks (SU/Hx/Nx), and C) same as group B, except for receiving 1% DHEA-containing food from week 3 to week 8 (+ DHEA).

Figure 2: (A-F) Hemodynamic parameters in catheterized rats: RV systolic pressure (RVSP, A), cardiac index (CI, B), total pulmonary resistance index (TPRI, C), RV/LV + septum weight ratio (D), systolic arterial pressure (SAP, E), and heart rate (F). (G, H) Morphometric analysis of medial wall thickening (G), and luminal occlusion (H), of medium-sized and small pulmonary arteries, respectively.

Data are expressed as mean ± SEM.

*, p < 0.05 vs. normal controls. +, p < 0.05 vs. SU/Hx/Nx.

Normal (n=6), SU/Hx/Nx (n=14), + DHEA (n=14)

For morphometric analyses, 4 samples per each group and 50 vessels per each sample were counted.

Figure 3: Echocardiographic assessment of RV function: RV internal diameter during diastole (RVID-Dia, A and D), tricuspid annular plane systolic excursion (TAPSE, B and
E), and pulmonary artery acceleration time (PA-AT, C and G). (F) A correlation analysis between TAPSE and CI in the 3 groups. Dotted red lines in (A) highlight the inter-ventricular septum. White arrows in (C) point to systolic notching in Doppler flow waves.

Data are expressed as mean ± SEM.

*, $p < 0.05$ vs. normal controls. +, $p < 0.05$ vs. SU/Hx/Nx.

Normal (n=4), SU/Hx/Nx (n=6), + DHEA (n=6)

Figure 4: Morphometric assessment of RV structural remodeling. Fibrosis was evaluated by Masson’s trichrome staining (A), and collagen 1-A expression by western blotting (D). (B and E) Cardiomyocyte cross-sectional area was measured in transversally cut cardiomyocytes. Representative images in (B) are 50 μm x 50 μm squares. (C and F) RV capillary density was assessed in CD31-stained sections.

Scale bar = 50 μm

Data are expressed as mean ± SEM.

*, $p < 0.05$ vs. normal controls. +, $p < 0.05$ vs. SU/Hx/Nx.

Normal (n=4), SU/Hx/Nx (n=5), + DHEA (n=5)

Figure 5: Assessment of RV apoptosis: by TUNEL assay (A and B, white arrows point to positive spots), and cleaved caspase 3 expression by immunohistochemistry (C, positive areas appear brownish) and western blotting (D).

Scale bar = 50 μm
Figure 6: Assessment of RV oxidative stress: by DHE immunofluorescence (A, positive areas appear red), and nitrotyrosine immunohistochemistry (B, positive areas stain brown). Lucigenin chemiluminescence assay (C), without (left panel) and with (right panel) exogenous NADPH, was used to quantify the level of superoxide production. (D) Western blot analysis of gp91phox (NADPH oxidase subunit) in RV tissue homogenates. (E) RV-tissue levels of NADPH.

Scale bar = 50 μm

*, p < 0.05 vs. normal controls. +, p < 0.05 vs. SU/Hx/Nx.

Normal (n=4), SU/Hx/Nx (n=5), + DHEA (n=5)

Figure 7: Western blot analyses of ROCKI/β (A), ROCKII/α (B), P-MYPT1/T-MYPT1 ratio (C), NFATc3 (D), and P-STAT3 (E) in whole RV tissue homogenates.

Western blot bands were rearranged as indicated by the black dividing lines.

*, p < 0.05 vs. normal controls. +, p < 0.05 vs. SU/Hx/Nx.

Normal (n=4), SU/Hx/Nx (n=5), + DHEA (n=5)